首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Hunan-Guizhou-Guangxi area there have developed very thick bedded siliceous rocks of the late Sinian. The rocks have a fairly pure composition, with an average content of siliceous minerals exceeding 95%. They are relatively rich in Fe and Mn, and poor in Al, Ti and Mg. The Fe/Ti, (Fe+Mn)/Ti, Al/(Al+Fe+Mn) and U/Th ratios and the Al-Fe-Mn and Fe-Mn-(Ni+Co+Cu)×10 triangle diagrams all show that they are hydrothermal sedimentary siliceous rocks. In the rocks the total amount of REEs is low, the δCe shows an obvious negative anomaly and the 8Eu a weak anomaly, and LREE>HREE, all indicating that they are products of hydrothermal processes. The δ30Si and δ18O values, as well as the formation temperature of the rocks all clearly show that the silica forming the rocks comes from hot water. Besides, analyses of the depositional environment of the rocks using the MnO/TiO2 ratio and the δCe and δ30Si values yield the same conclusion that they are formed in environments from continental marginal slope  相似文献   

2.
扬子陆块北缘的鄂东北地区是湖北省沉积变质型锰矿集中区,发育了广水—黄陂—蕲春SEE-NWW向元古代沉积变质锰矿带,锰矿赋存于新元古界红安岩群中。本文以鹰咀山锰矿床、四方山锰矿床及孙冲锰矿床为例,分析研究其矿物学特征和地球化学特征,以便为总结该区锰矿床成矿环境及成矿物质来源提供帮助。研究表明,锰矿石矿物主要为菱锰矿、软锰矿、硬锰矿、黑锰矿、锰铝榴石等;矿石化学组分多样,Co、Ni、Zn、Sr、Ba、U等元素相对富集。锰矿石的w(Th)/w(U)、w(V)/w(Cr)值反映锰矿形成于弱氧化-还原的沉积环境;w(SiO2)/w(Al2O3)、w(Fe+Mn)/w(Ti)、w(Fe)/w(Ti)、w(Al)/w(Fe+Mn+Al)、w(Y)/w(Ho)、w(La)/w(Ce)特征值,以及w(SiO2)—w(Al2O3)图解、w(Fe)/w(Ti)—w(Al)/w(Fe+Mn+Al)图解,均反映其成矿过程中有热水物质参与。因此,鄂东北地区的沉积变质型锰矿形成于弱氧化-还原性沉积环境,有热水(液)活动参与成矿作用并提供了丰富的物质来源。  相似文献   

3.
Chemical analyses and crystallographic and some optical data have been obtained for 28 samples of beryl from Bahia State, Brazil. The larger range of variability in the chemical composition is shown by Mg, Fe and Li. Sodium is the more diffuse alkali element. Potassium is always very limited. Calcium appears in noticeable amounts only in three samples. The Ti, Cr, Rb, and Cs elements were also tested. The samples studied here can be defined as sodium-potassium beryls with low alkali content. Unit cell parameters show the following ranges: a=9.210–9.245 and c=9.190–9.220 Å. From a statistical analysis of these data it may be seen that: an increase of Fe and (Fe+Mn+Mg) percentage has a positive correlation with a, but no influence on c, which in turn has a close positive correlation with Li and is negatively correlated with Be. Less negative correlations also exist between the pairs {Be, Li}, {a,Al}, {Al, Fe} and {Al, (Fe+Mn+Mg)}. A positive correlation also exists between sodium and the parameter a.  相似文献   

4.
Based on modal and chemical composition, the rocks of the Prairie Creek diatreme situated 4 km SSE of Murfreesboro, Pike County, Arkansas, are classified as micaceous kimberlite. The K-Ar isotopic analysis of phlogopite from this diatreme yielded an age of 106 ± 3 m.y. (Albian) which is in agreement with stratigraphic relations. Electron beam probe data on minerals from kimberlite breccia, one of the three textural types, are presented. The breccia is considered as the potential source of the diamonds that have been mined at the diatreme. It contains phenocrysts of olivine (Fo90–92) and serpentine pseudomorphs after olivine embedded in a groundmass of serpentine, minor calcite, chrome-diopside, phlogopite (Mg/Mg+Fe = 84.15%), perovskite, spinels, and pentlandite. Xenoliths of shales, sandstones, and mantle-derived ultramafic material are also present. Spinels are rich in Cr, Ti, and Fe and generally low in Al. Zoned spinels show enrichments in Ti and Fe towards their rims. A positive correlation between 100(Fe3++Ti)/(Cr+Al+Fe3++Ti) and 100 Mg/(Mg+Fe2+) ratios exists in these spinels and probably reflects an oxygen fugacity increase during magma crystallization. Occluded gases in diamonds and kimberlites corroborate the hypothesis that the parent magma of the Prairie Creek kimberlite was derived by partial melting of upper-mantle garnet lherzolite under volatile-rich conditions, primarily enriched in H2O and CO2.  相似文献   

5.
Minerals of the triphylite-lithiophilite, Li(Fe, Mn)PO4, and the triplite-zwieselite-magniotriplite series, (Mn, Fe, Mg)2PO4F, occur in the late stage period of pegmatite evolution. Unfortunately, neither are the genetic relationships between these phosphates fully understood nor are thermodynamic data known. Consequently, phosphate associations and assemblages from 8 granitic pegmatites — Clementine II, Rubicon II and III, and Tsaobismund (Namibia); Hagendorf-Süd and Rabenstein (Germany); Valmy (France); Viitaniemi (Finland) — have been tested for compositional zoning and intercrystalline partitioning of main elements by electron microprobe techniques. Although the selected pegmatites display varying degrees of fractionation, and the intergrowth textures indicate different genetic relationships between the phosphates, the plots of mole fractions X Fe=Fe/(Fe+Mn+Mg+Ca), X Mn=Mn/(Fe+Mn+Mg+Ca), and X Mg=Mg/(Fe+Mn+Mg+Ca) can be fitted relatively well with smooth curves in Roozeboom diagrams. Their deviations from symmetrical distribution curves are mainly dependent upon X Mg or X Ca, and upon non-ideal solutions. Surprisingly small differences between the partition coefficients were detected for intergrowths of different origin. However, the partitioning of shared components among coexisting phases is clearly dependent upon the conditions of formation. Compositional zoning is observed only when both Fe–Mn phosphates are intergrown mutually or with other Fe–Mn–Mg mineral solid-solutios. Thus, the zoning does not seem to be due to continuous crystallization, but to later diffusion processes. The triplite structure has preference for Mn, Mg, and Ca, while Fe prefers minerals of the triphylite series. A quantification of main element fractionation between minerals of the triphylite and the triplite series is possible in the cases where diffusion can be excluded. For the Fe/(Fe+Mn) ratios of core compositions an equation with a high correlation coefficient (R=0.988) was determined: Fe/(Fe+Mn)Tr=[Fe/(Fe+Mn)Li]/{2.737-(1.737)[Fe/(Fe+Mn)Li]} (Tr=triplite series, Li=triphylite series). Consequently, the Fe/(Fe+Mn) ratio of the triplite series can now also be used in the interpretation of pegmatite evolution, just like that of the triphylite series which has been successfully applied in the past.  相似文献   

6.
Solid solution in vesuvianite is elucidated by examining chemical trends and cation abundances in 22 microprobe analyses of samples from the Big Maria Mountains, southeastern California. Two recent structure refinements indicate 50 filled cation sites per formula, providing the basis for data normalization. Previous optical absorption and Mössbauer studies help clarify site occupancies. Stoichiometric abundances of Si and Ca + Na indicate 18 and 19 per formula, filling all 4- and 8-fold sites respectively. The four 6-fold A-sites are filled with Al. The solid solution occurs mainly within the eight 6-fold AlFe-sites (Al, Mg, Fe2+, Fe3+, Ti) and one 5-fold B-site (Mg, Fe2+, Fe3+). Chemical trends and crystal chemical constraints delineate eight independent substitutions.An extensive solid solution in the elements Mg, Fe, Al, and Ti suggests considerable potential as a petrogenetic indicator. In order to treat equilibria involving vesuvianite thermodynamically, a reference composition must be chosen and activity-composition relations modeled. For a reference composition, Mg-vesuvianite (Fe, Ti, Na-free) was chosen because of its chemical simplicity, but problems in ascertaining its stoichiometry have led previous workers to propose at least six different formulas. In this study, its formula is determined from the microprobe analyses by applying exchange vectors to substitute components of pure Mg-vesuvianite for Fe and Ti. This yields Ca19Mg2Al11-Si18 O69(OH)9, with AlFe-sites=MgAl7, and B-sites=Mg. Subdivision of the AlFe-sites into at least two distinct sites is suggested by observed chemical trends which are explanable only when different substitutions are considered to operate within different AlFe-sites.A thermodynamic mole fraction is formulated for Mg-vesuvianite based on an ideal mixing-on-sites solution model. A method is provided for estimating the distribution of Fe between the AlFe- and B-sites. Thermodynamic mole fractions calculated using Fe site distributions estimated from microprobe data yield results similar to those calulated using Fe site distributions determined from Mössbauer analysis.  相似文献   

7.
莫托萨拉铁锰矿床位于西天山阿吾拉勒成矿带东端,研究程度相对薄弱,在矿床成因方面存在热水沉积、沉积-热液改造、胶体化学沉积等争论。本文详细研究了莫托萨拉最上层锰矿及其围岩的矿物组成、结构构造和地球化学特征,并综合前人资料对整个铁锰矿床的成因做了进一步探讨。本研究首次在矿区发现了热液长石岩,其主要由钠长石、钾长石以及少量重晶石、霓石、锌铁黄长石等矿物组成,类似于"白烟型"热水沉积岩。莫托萨拉最上层锰矿主要由锰橄榄石、褐锰矿、红硅锰矿、磁锰铁矿以及少量重晶石、方铁锰矿等矿物组成,发育有典型的热水内碎屑结构,指示其沉积于海底热液喷流口附近。该层锰矿的Al/(Al+Fe+Mn)值很低(0~0.02)、Si/Al值较高(7.9~10.9)、Fe/Ti值很高(428~1353),通过UCC标准化后发现明显富集Zn、Ba、Pb等元素,而Co、Ni、Cu等元素未见富集,以上地球化学特征与现代海底热液成因铁锰沉积物一致。在Fe/Ti-Al/(Al+Fe+Mn)、Si O2-Al2O3、10×(Co+Ni+Cu)-Fe-Mn、100×(Zr+Ce+Y)-15×(Cu+Ni)-(Fe+Mn)/4等判别图中,莫托萨拉的锰矿层和铁矿层样品均落在海底热液沉积区。锰矿层和铁矿层的稀土元素经PAAS标准化后具有明显的Ce负异常、Eu正异常和Y正异常,与现代海底热液成因铁锰沉积物的稀土配分模式非常相似。综合分析本次研究的矿物学、岩石学、地球化学特征以及前人资料,本文认为莫托萨拉铁锰矿床为海相热水沉积成因,成矿与同期海底火山的间歇性活动密切相关,海底热液的化学组分、温度高低和活动强弱都具有明显的脉动性。莫托萨拉矿区铁锰共存但各自独立成矿,且铁锰分离程度较高,这在显生宙沉积型锰矿中独具特色。鉴于前人曾报道莫托萨拉铁矿石中存在菌藻类微生物化石,我们推测,该矿床的铁锰分离过程除了受控于沉积环境的氧化还原条件变化外,微生物的选择性氧化沉淀可能也发挥了重要作用,值得开展深入研究。  相似文献   

8.
The occurrence and chemistry of immiscible silicate glasses in a tholeiite mesostasis from the Umtanum formation, Washington, were investigated with transmission electron microscopy and analytical electron microscopy (TEM/AEM). TEM observation reveals isolated, dark globules (2.1 micron or less in diameter) randomly distributed in a transparent matrix glass interstitial to plagioclase laths. The globules less than 0.3 micron and larger than 0.8 micron fall beyond the linear relationship defined by the 0.3–0.8 micron globules in a plot of the logarithm of number versus size. Large globules (0.7 micron or larger in diameter) range from homogeneous to heterogeneous in optical properties and chemistry. Homogeneous globules are completely glassy, whereas heterogeneous globules contain crystalline domains. AEM analyses show that the globules have high Si, Fe, Ca, and Ti with subordinate Mg, Al, P, S, Cl, K, and Mn, which gives high normative fa, px, il, and ap. The matrix glass consists dominantly of Si with low Al and minor Na and K, yielding a high normative qz, or, ab, and an.It is proposed that the silicate liquid immiscibility occurs by reaction of network-modifying cations (NMCs) with dominantly chain-like anionic units in the parental melt to form less polymerized, NMC-bearing units and highly polymerized, Si-rich units. The globules nucleated metastably under supercooled conditions, and medium-size globules become either larger or smaller at lower temperatures. Internal nucleation of NMC-rich phases occurred in some larger globules upon cooling.  相似文献   

9.
Summary In the zoned clinopyroxene phenocrysts from the volcanic rocks of Almopia the Mg/Fe ratio and the contents of Mn, and mostly of Na, increase from the core towards the rim of the crystals, whereas the Fe3+/Fe2+ ratio, and in many cases the contents of Ca, decrease. On the contrary, the content of Si decreases from inside outwards or remains almost constant whereas Al and Ti increase.The high Ca-content of the clinopyroxenes, low Ti, and limited Fe-enrichment, with a trend from Ca43.3: Mg47.0: (Fe + Mn)9.7 to Ca46.6: Mg42.2: (Fe + Mn)11.2, illustrate the shoshonitic to cale-alkaline nature of the parental magma.The composition of the clinopyroxenes indicates that, of all possible controlling factors, the high water-vapour pressure is considered to play an important role for the AlIV fluctuations during the crystallization.
Zonierte klinopyroxene der vulkanite von almopia (Voras-Gebirge), Zentral-Mazedonien, Griechenland
Zusammenfassung Bei den zonierten Klinopyroxeneinsprenglingen der Vulkanite von Almopia nehmen das Mg/Fe-Verhältnis und die Gehalte an Mn und meistens an Na in den einzelnen Zonen vom Kern zum Rand zu, während das Fe3+/Fe2+-Verhältnis, und in vielen Fällen die Gehalte an Ca, abnehmen. Im Gegensatz dazu nimmt der Gehalt an Si von innen nach außen ab oder bleibt fast konstant, während Al und Ti zunehmen.Der hohe Ca-Gehalt und gleichzeitig niedrige Ti-Gehalt der Klinopyroxene, zusammen mit ihrer begrenzten Fe-Anreicherung und einem Trend von Ca43.3: Mg47.0: (Fe + Mn)9.7 bis Ca46.6: Mg42.2: (Fe + Mn)11.2 weisen auf die shoshonitische bis kalk-alkalische Natur des Stammagmas hin. Die Zusammensetzung der Klinopyroxene weist darauf hin, daß der hohe Wasserdampfdruck im Magma auch eine wichtige Rolle für Schwankungen im AlIV-Gehalt während der Kristallisation darstellt.
  相似文献   

10.
We have measured with an electron microprobe the Mg, Al, Si, Ca, Ti, Mn, and Fe contents of five strongly heated stony cosmic spherules (sCS) from the South Pole water well. We have also measured the isotopic compositions of Si, and when possible of Mg and of Fe in these objects by ion microprobe. Except for iron, the measured elemental compositions are chondritic within a factor of 2. In four samples, the ratio of 57Fe/56Fe exceeds the terrestrial value by 3.5‰ to 48‰. Mass-dependent fractionation of the isotopes of Si ranges from ∼2 to ∼8 ‰/AMU in three samples. Mg is clearly fractionated in only one sample, for which δ25Mg = ∼8 ‰. The extent of mass-dependent fractionation of the isotopes and, by implication, of evaporative loss generally follows a trend Mg < Si < Fe. The trend is similar to that found in laboratory heating experiments of charges with solar composition. Although the observed isotopic inhomogeneities within some samples call into question the strict validity of the Rayleigh equation for the sCS, its approximate application to our new and to previously published results for Mg suggests that evaporative losses of greater than 40 wt.% occur rarely from sCS, and that the precursor grains of the sCS had a CM-carbonaceous-chondrite-like complement of Mg, Si, Ca, and Al. Low Fe contents relative to CM abundances could reflect an unusual precursor composition, or, more probably, losses by processes that did not fractionate isotopes, i.e., ejection of immiscible FeS and FeNi beads from the melt or rapid, complete separation and decomposition of FeS at the surface.  相似文献   

11.
(Mg,Fe)(Si,Al)O3 perovskite samples with varying Fe and Al concentration were synthesised at high pressure and temperature at varying conditions of oxygen fugacity using a multianvil press, and were characterised using ex?situ X-ray diffraction, electron microprobe, Mössbauer spectroscopy and analytical transmission electron microscopy. The Fe3+/ΣFe ratio was determined from Mössbauer spectra recorded at 293 and 80?K, and shows a nearly linear dependence of Fe3+/ΣFe with Al composition of (Mg,Fe)(Si,Al)O3 perovskite. The Fe3+/ΣFe values were obtained for selected samples of (Mg,Fe)(Si,Al)O3 perovskite using electron energy-loss near-edge structure (ELNES) spectroscopy, and are in excellent agreement with Mössbauer data, demonstrating that Fe3+/ΣFe can be determined with a spatial resolution on the order of nm. Oxygen concentrations were determined by combining bulk chemical data with Fe3+/ΣFe data determined by Mössbauer spectroscopy, and show a significant concentration of oxygen vacancies in (Mg,Fe)(Si,Al)O3 perovskite.  相似文献   

12.
Surface slices of 20 sediment cores, off southwestern Taiwan, and bed sediment of River Kaoping were measured for major and trace elements (Al, As, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V, and Zn) to evaluate the geochemical processes responsible for their distribution, including elemental contamination. Major element/Al ratio and mean grain size indicate quartz-dominated, coarse grained sediments that likely derived from sedimentary rocks of Taiwan and upper crust of Yangtze Craton. Bi-plot of SiO2 versus Fe2O3T suggests the possible iron enrichment in sediments of slag dumping sites. Highest concentrations of Cr, Mn, P, S, and Zn found in sediments of dumping sites support this. Correlation analysis shows dual associations, detrital and organic carbon, for Cr, P, S, and V with the latter association typical for sediments in dumping sites. Normalization of trace elements to Al indicates high enrichment factors (>2) for As, Cd, Pb, and Zn, revealing contamination. Factor analysis extracted four geochemical associations with the principal factor accounted for 25.1% of the total variance and identifies the combined effects of dumped iron and steel slag-induced C–S–Fe relationship owing to authigenic precipitation of Fe–Mn oxyhydroxides and/or metal sulfides, and organic matter complexation of Fe, Mn, Ca, Cr, P, and V. Factors 2, 3, and 4 reveal detrital association (Ti, Al, Ni, Pb, Cu, and V), effect of sea salt (Cl, Mg, Na, and K) and anthropogenic component (As and Zn)-carbonate link, respectively, in the investigated sediments.  相似文献   

13.
Variations in chemistry and related physical properties of sheet silicates in the Ouégoa district with metamorphic grade are investigated. Weakly metamorphosed rocks prior to the crystallization of lawsonite contain phengite (d 006=3.317–3.323 Å), chlorite and occasionally paragonite while interstratified basaltic sills contain chlorite, minor phengite and stilpnomelane. Pyrophyllite crystallizes before lawsonite in some metamorphosed acid tuffs and is also stable in the lawsonite zone. Paragonite, phengite and chlorite appear to be stable through the sequence from weakly metamorphosed rocks into high-grade “eclogitic” schists and gneisses. Optical, chemical and some X-ray diffraction data is given for representative sheet silicates. Electron probe analyses of 55 phengites, 21 paragonites, 57 chlorites, 12 vermiculites, 2 stilpnomelanes, and 2 chloritoids are presented in graphical form. All K-micas analysed are consistently phengitic (3.29–3.55 Siiv ions per formula unit) and show limited solid solution with paragonite (4 to 13% Pa). The K∶Na ratio of the phengite is strongly dependant on the assemblage in which it occurs; the amount of phengite component and its Fe∶Mg ratio depends on bulk-rock composition. Phengites from acid volcanics have the highest Fe∶Mg ratio, highest phengite component and β refractive indices. Phengites from basic volcanics and metasediments of the epidote zone have the lowest Fe∶Mg ratio. Phengites from lawsonite-zone metasediments have intermediate Fe∶Mg ratios. The phengites show a small decrease in phengite component with increasing metamorphic grade. d 006 for phengites varied from 3.302 to 3.323 Å but at least in the lawsonite and epidote zones appears to reflect composition and had little systematic variation with metamorphic grade; phengites from very low-grade rocks showed the longest values of d 006. Paragonite shows almost no phengite-type substitution and only limited solid solution (4–12%) with muscovite. All paragonites (6) and most phengites (20) which have been examined are 2M1 polymorphs; one Fe2+-phengite appears to be a 1M polymorph. The chemistry of chlorites closely reflects parent-rock chemistry. Chlorites from metasediments have distinctly higher Fe/(Fe+Mg) ratios than chlorites from basic igneous rocks; chlorites from the lawsonite and lawsonite-epidote transitional zone metasediments have the highest Fe/(Fe+Mg) ratios. In metabasalts Fe/(Fe+Mg) ratios appear to reflect individual variations in bulk-rock chemistry and show no direct correlation with metamorphic grade. There is little difference in Al/(Si+Al) ratio between chlorites from sediments and basic igneous rocks although in both lithologies the chlorites from the epidote zone appear to be slightly more aluminous. Fe-rich chlorites of the lawsonite zone metasediments have been altered by a process involving leaching of Fe and Mg and introduction of alkalies to a brown pleochroic Fe-vermiculite. Chemical and physical data for this vermiculite are given. The decrease in Fe/(Fe+Mg) ratio in chlorites and phengites on passing from the lawsonite to the epidote zone can be correlated with the crystallization of Fe-rich epidote and almandine in the epidote zone. Elemental partitioning between coexisting minerals has shown Ti to be partitioned into phengite, while Fe and Mn are strongly partitioned into chlorite. When either stilpnomelane or chloritoid coexists with phengite or chlorite, Fe and Mn are slightly enriched in the stilpnomelane or chloritoid relative to the chlorite.  相似文献   

14.
Summary Garnet occurs as a significant mineral constituent of felsic garnet-biotite granite in the southern edge of the Třebíč pluton. Two textural groups of garnet were recognized on the basis of their shape and relationship to biotite. Group I garnets are 1.5–2.5 mm, euhedral grains which have no reaction relationship with biotite. They are zoned having high XMn at the rims and are considered as magmatic. Group II garnets form grain aggregates up to 2.5 cm in size, with anhedral shape of individual grains. The individual garnet II grains are usually rimmed by biotite and have no compositional zoning. The core of group I garnets and group II garnets contains 67–80 mol% of almandine, 5–19 mol% of pyrope, 7–17 mol% of spessartine and 2–4 mol% of grossular. Biotite occurs in two generations; both are magnesian siderophyllites with Fe/(Fe + Mg) = 0.50–0.69. The matrix biotite in granites (biotite I) has high Ti content (0.09–0.31 apfu) and Fe/(Fe + Mg) ratio between 0.50 and 0.59. Biotite II forms reaction rims around garnet, is poor in Ti (0.00–0.06 apfu) and has a Fe/(Fe + Mg) ratio between 0.61 and 0.69. The textural relationship between biotite and garnet indicates that garnet reacted with granitic melt to form Ti-poor biotite and a new granitic melt, depleted in Ti and Mg and enriched in Fe and Al. In contrast to the host durbachites (hornblende-biotite melagranites), which originated by mixing of crustal melts and upper mantle melts, the origin of garnet-bearing granites is related to partial melting of the aluminium-rich metamorphic series of the Moldanubian Zone.  相似文献   

15.
The data obtained on melt and fluid inclusions in minerals of granites, metasomatic rocks, and veins with tin ore mineralization at the Industrial’noe deposit in the southern part of the Omsukchan trough, northeastern Russia, indicate that the melt from which the quartz of the granites crystallized contained globules of salt melts. Silicate melt inclusions were used to determine the principal parameters of the magmatic melts that formed the granites, which had temperatures at 760–1020°C, were under pressures of 0.3–3.6 kbar, and had densities of 2.11–2.60 g/cm3 and water concentrations of 1.7–7.0 wt %. The results obtained on the fluid inclusions testify that the parameters of the mineral-forming fluids broadly varied and corresponded to temperatures at 920–275°C, pressures 0.1–3.1 kbar, densities of 0.70–1.90 g/cm3, and salinities of 4.0–75.0 wt % equiv. NaCl. Electron microprobe analyses of the glasses of twelve homogenized inclusions show concentrations of major components typical of an acid magmatic melt (wt %, average): 73.2% SiO2, 15.3% Al2O3, 1.3% FeO, 0.6% CaO, 3.1% Na2O, and 4.5% K2O at elevated concentrations of Cl (up to 0.51 wt %, average 0.31 wt %). The concentrations and distribution of some elements (Cl, K, Ca, Mn, Fe, Cu, Zn, Pb, As, Br, Rb, Sr, and Sn) in polyphase salt globules in quartz from both the granites and a mineralized miarolitic cavity in granite were assayed by micro-PIXE (proton-induced X-ray emission). Analyses of eight salt globules in quartz from the granites point to high concentrations (average, wt %) of Cl (27.5), Fe (9.7), Cu (7.2), Mn (1.1), Zn (0.66), Pb (0.37) and (average, ppm) As (2020), Rb (1850), Sr (1090), and Br (990). The salt globules in the miarolitic quartz are rich in (average of 29 globules, wt %) Cl (25.0), Fe (5.4), Mn (1.0), Zn (0.50), Pb (0.24) and (ppm) Rb (810), Sn (540), and Br (470). The synthesis of all data obtained on melt and fluid inclusions in minerals from the Industrial’noe deposit suggest that the genesis of the tin ore mineralization was related to the crystallization of acid magmatic melts. Original Russian Text@ V.B. Naumov, V.S. Kamenetsky, 2006, published in Geokhimiya, 2006, No. 12, pp. 1279–1289.  相似文献   

16.
贵州水城二叠系茅口组内发现新锰矿。通过对含锰岩系的地质地球化学研究,其富集Zn,Ni,As,Sb,Sr,Ba,Ga,Ag,V,U元素;锰含量较高层位,Th/U比值小于1,锰含量较低层位,Th/U比值往往高达4~5。Co/Ni比值小于1。含锰岩石的(Fe+Mn)/Ti均大于47,高于20,特别是含锰高的岩石,其(Fe+Mn)/Ti值在300以上。含锰岩石的Al/(Al+Fe+Mn)均远远低于0.35,一般为小于0.02。稀土配分模式与峨眉山玄武岩相似,∑REE较高,LREE/HREE值偏低等特征。根据锰岩系地球化学和区域构造特征分析,水城二叠系茅口组含锰岩系属于热水喷流沉积的产物。  相似文献   

17.
Magnetite, as a genetic indicator of ores, has been studied in various deposits in the world. In this paper, we present textural and compositional data of magnetite from the Qimantag metallogenic belt of the Kunlun Orogenic Belt in China, to provide a better understanding of the formation mechanism and genesis of the metallogenic belt and to shed light on analytical protocols for the in situ chemical analysis of magnetite. Magnetite samples from various occurrences, including the ore–related granitoid pluton, mineralised endoskarn and vein–type iron ores hosted in marine carbonate intruded by the pluton, were examined using scanning electron microscopy and analysed for major and trace elements using electron microprobe and laser ablation–inductively coupled plasma–mass spectrometry. The field and microscope observation reveals that early–stage magnetite from the Hutouya and Kendekeke deposits occurs as massive or banded assemblages, whereas late–stage magnetite is disseminated or scattered in the ores. Early–stage magnetite contains high contents of Ti, V, Ga, Al and low in Mg and Mn. In contrast, late–stage magnetite is high in Mg, Mn and low in Ti, V, Ga, Al. Most magnetite grains from the Qimantag metallogenic belt deposits except the Kendekeke deposit plot in the " Skarn " field in the Ca+Al+Mn vs Ti+V diagram, far from typical magmatic Fe deposits such as the Damiao and Panzhihua deposits. According to the(Mg O+Mn O)–Ti O2–Al2O3 diagram, magnetite grains from the Kaerqueka and Galingge deposits and the No.7 ore body of the Hutouya deposit show typical characteristics of skarn magnetite, whereas magnetite grains from the Kendekeke deposit and the No.2 ore body of the Hutouya deposit show continuous elemental variation from magmatic type to skarn type. This compositional contrast indicates that chemical composition of magnetite is largely controlled by the compositions of magmatic fluids and host rocks of the ores that have reacted with the fluids. Moreover, a combination of petrography and magnetite geochemistry indicates that the formation of those ore deposits in the Qimantag metallogenic belt involved a magmatic–hydrothermal process.  相似文献   

18.
Three sediment cores in a north-south transect (3°N to 13°S) from different sediment types of the Central Indian Ocean Basin (CIOB) are studied to understand the possible relationship between magnetic susceptibility (χ) and Al, Fe, Ti and Mn concentrations. The calcareous ooze core exhibit lowest χ (12.32 × 10−7 m3 kg−1), Al (2.84%), Fe (1.63%) and Ti (0.14%), terrigenous clay core with moderate χ (29.93 × 10−7 m3 kg−1) but highest Al (6.84%), Fe (5.20%) and Ti (0.44%), and siliceous ooze core with highest χ (38.06 × 10−7 m3 kg−1) but moderate Al (4.49%), Fe (2.80%) and Ti (0.19%) contents. The distribution of χ and detrital proxy elements (Al, Fe, and Ti) are identical in both calcareous and siliceous ooze. Interestingly, in terrigenous core, the behaviour of χ is identical to only Ti content but not with Al and Fe suggesting possibility of Al and Fe having a non-detrital source. The occurrence of phillipsite in terrigenous clay is evident by the Al-K scatter plot where trend line intersects K axis at more than 50% of total K suggesting excess K in the form of phillipsite. Therefore, the presence of phillipsite might be responsible for negative correlation between χ and Al (r = −0.52). In siliceous ooze the strong positive correlations among χ, Alexc and Feexc suggest the presence of authigenic Fe-rich smectite. High Mn content (0.5%) probably in the form of manganese micronodules is also contributing to χ in both calcareous and siliceous ooze but not in the terrigenous core where mean Mn content (0.1%) is similar to crustal abundance. Thus, χ systematically records the terrigenous variation in both the biogenic sediments but in terrigenous clay it indirectly suggests the presence of authigenic minerals.  相似文献   

19.
This study of La Gloria pluton in the Chilean Andes evaluates what information about magmatic conditions can be extracted from minerals in a granitic pluton, despite lower-temperature re-equilibration. The pluton is zoned vertically from granodiorite/quartz monzodiorite to quartz monzonite at the roof, with the uppermost 1500 m showing the strongest modal and compositional trends. This mimics the pattern frequently inferred from zoning in voluminous ignimbrites: a strongly zoned cap overlying a more homogeneous main␣body. The presence of large, euhedral amphibole ± biotite at the chamber margins and roof indicate that water was concentrated there. Biotite and amphibole compositions indicate a roofward increase in magmatic f HF, f HCl and F/Cl ratio, analogous to pre-eruptive volatile gradients recorded in zoned ignimbrites. Hornblende that crystallized directly from the melt in the volatile-rich wall and roof zones yields total-Al solidification pressures of ˜1 kbar, consistent with the estimated 4000 m of cover at the time of emplacement. In the core of the pluton, actinolitic amphibole formed by reaction of melt with early-crystallized clinopyroxene. Plag-cpx cumulate clots in the lower level are interpreted as early crystallizing phases entrained in rising granitic magma. Cores of amphibole phenocrysts in mafic enclaves suggest initial crystallization at pressures of 2–3 kbar. Lower Ti and Al contents of rims and acicular groundmass amphibole, overlapping the composition of amphibole in the host granitoid, indicate that the enclaves equilibrated with the host at the present exposure level in the presence of interstitial melt. A roofward relative increase in fO2 of the magma is recorded by an increasing proportion of Fe-Ti oxides as a fraction of the mafic phases, greater Mn content of ilmenite, and constant or higher Mg/(Mg+Fe) in hornblende and biotite despite declining whole-rock MgO contents. Association␣of subhedral biotite and magnetite with actinolitic amphibole in clots implies a reaction: K-Ti-hb + O2(gas) = bi + mt + actinolitic amph + titanite. Magnetite coexisting with biotite with Fe/(Fe+Mg) = 0.34– 0.40 implies temperatures of equilibration no lower than about 720–750 °C, i.e., late-magmatic rather than subsolidus. Saturation with respect to a water-rich vapor and subsequent diffusive loss of hydrogen may have caused this oxidation trend, which resulted in the most magnesian mafic phases occurring in the most compositionally evolved rocks, opposite to trends in most zoned ignimbrites, which presumably record conditions nearer the liquidus and prior to exsolution of a water-rich vapor. Two-feldspar and Fe-Ti-oxide geothermometers record subsolidus conditions in the pluton and yield higher temperatures for samples from the roof zone, suggesting that slower cooling at deeper levels allowed these minerals to continue to equilibrate to lower temperatures. Individual minerals span wide ranges in composition at any given level of the pluton, from those appropriate for phenocrysts, to those that record conditions well below the solidus. We suggest that the shallow level and isolated position of the pluton led to rapid escape of magmatic volatiles and rapid cooling, thereby preventing development of a long-lived hydrothermal system. Resulting small water/rock ratios may account for why late-magmatic and subsolidus re-equilibration were not pervasive. Received: 23 August 1996 / Accepted: 18 October 1996  相似文献   

20.
Suzanne Y. Wass 《Lithos》1979,12(2):115-132
Geochemical and textural data on clinopyroxenes in individual alkali basaltic flows from provinces in eastern Australia and the Massif Central can be used to differentiate four different modes of origin (three at high pressure) for these clinopyroxenes. Many single flows from the two provinces contain clinopyroxenes of three, or even four, of these origins. Rare flows contain core clinopyroxene with overgrowths of clinopyroxenes of two distinct generation. Each of the overgrowth is compositionally analogous to clinopyroxenes occurring in xenoliths or as discrete crystals in the same host lava. Such rimming relationships provide evidence that the host magma has undergone high pressure crystallisation and confirm that some xenoliths and megacrysts are cognate. With decreasing pressure the major changes in clinopyroxene chemistry are an increase in the ratio Allv/Alvi, a linear increase of atomic proportions of Ti and Al with decreasing Si, and an increase in the Ti: (100 Mg/(Mg + Σ Fe)) ratio of the pyroxenes. Al2O2 wt, % is an unreliable potential geobarometric indicator; consideration of tetrahedral and octahedral site occupancies by Al (Allv/Alvl ratio) is necessary. High-pressure fractionation dominated by clinopyroxene is postulated for some basaltic-composition, resulting in SiO2 depletion, alkali enrichment and decrease in the Mg/(Mg + Fe2+) value of the host magma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号