首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The attitude consensus problem of multiple rigid spacecraft systems is one of the key issues in spacecraft formation flying and has been extensively studied. In this paper, we further consider the leader‐following attitude consensus problem of multiple rigid uncertain spacecraft systems subject to a class of multi‐tone sinusoidal disturbances with arbitrarily unknown amplitudes, initial phases, frequencies, and constant biases. In contrast to the existing results, in order to achieve asymptotic reference tracking and disturbance rejection by smooth control, we have integrated the distributed observer approach with internal model and adaptive control techniques. Simulation results are shown to validate the effectiveness of the proposed control law. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This paper solves the attitude synchronization and tracking problem for a group of flexible spacecraft without flexible‐mode variable measurement. The spacecraft formation is studied in a leader‐following synchronization scheme with a dynamic virtual leader. With the application of adaptive sliding‐mode control technique, a distributed modified Rodriguez parameters‐based dynamic controller is proposed for flexible spacecraft without requiring modal variable measurement. It is proved that the attitude synchronization and tracking can be achieved asymptotically under the control strategy through the Lyapunov's stability analysis. Furthermore, a distributed robust continuous control algorithm is designed to guarantee the ultimate boundedness of both the attitude tracking error and the modal variable observation error when bounded external disturbances exist. Some numerical simulation examples for multiple flexible spacecraft formation are given to demonstrate the effectiveness of the proposed method.  相似文献   

3.
This paper addresses attitude synchronization and tracking problems in spacecraft formation in the presence of model uncertainties and external disturbances. A decentralized adaptive sliding mode control law is proposed using undirected interspacecraft communication topology and analyzed based on algebraic graph theory. A multispacecraft sliding manifold is derived, on which each spacecraft approaches desired time‐varying attitude and angular velocity while maintaining attitude synchronization with the other spacecraft in the formation. A control law is then developed to ensure convergence to the sliding manifold. The stability of the resulting closed‐loop system is proved by application of Barbalat's Lemma. Simulation results demonstrate the effectiveness of the proposed attitude synchronization and tracking methodology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This paper investigates the control problem of finite‐time attitude synchronization and tracking for a group of rigid spacecraft in the presence of environmental disturbances. A new fast terminal sliding manifold is developed for multiple spacecraft formation flying under the undirected graph topology. On the basis of the finite‐time control and adaptive control strategies, two novel decentralized finite‐time control laws are proposed to force the spacecraft attitude error dynamics to converge to small regions in finite time, and adaptive control is applied to reject the disturbance. The finite‐time convergence and stability of the closed‐loop system can be guaranteed by Lyapunov theory. Simulation examples are provided to illustrate the feasibility of the control algorithm. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The asymptotic rejection of spacecraft systems under multi‐tone sinusoidal disturbances has been studied recently for the case where the frequencies of the disturbance are known. In this paper, we further consider the case where the frequencies of the disturbance are unknown. We show that this case can be solved by an adaptive regulation technique. We also present some analysis on the convergence issue of the estimated frequencies to unknown frequencies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents the finite‐time attitude synchronization and tracking control method of undirected multi‐spacecraft formation with external disturbances. First, a modified adaptive nonsingular fast terminal sliding mode surface (ANFTSMS) is designed by introducing a user‐defined function, both of which avoid the singularity problem and continuous sliding surface, and, therefore, can freely adjust relative weighting between angular velocity error and attitude error adaptively, such that the controller can provide sufficient maneuvers and precision. This provides designers with a new technique to adjust and improve formation control performance. Second, by applying the ANFTSMS associated with adaptation, two proposed decentralized ANFTSM‐controllers provide finite‐time convergence, robustness to disturbance, and chattering free for continuous design. Finally, simulation results validate the proposed algorithms.  相似文献   

7.
Most industrial manipulators operate from a fixed base. Hence, there are no disturbances from the environment to alter the position of the end‐effector. On the other hand, manipulators that are mounted on mobile platforms are subject to disturbances emerging from unwanted motion at the base. Similarly, manipulators that perform delicate operations in space while on board in‐orbit spacecraft experience disturbances. This article describes the design and implementation of a disturbance rejection controller for a 6 degree‐of‐freedom (DOF) programable universal manipulator for assembly (PUMA) manipulator mounted on a 3‐DOF platform. A control algorithm is designed to track the desired position and attitude of the end‐effector in inertial space, subject to unknown disturbances in the platform axes. Experimental results are presented for step, sinusoidal, and random disturbances in the platform rotational axis and in the neighborhood of kinematic singularities. ©1999 John Wiley & Sons, Inc.  相似文献   

8.
This paper investigates the finite‐time attitude stabilization problem for rigid spacecraft in the presence of inertia uncertainties and external disturbances. Three nonsingular terminal sliding mode (NTSM) controllers are designed to make the spacecraft system converge to its equilibrium point or a region around its equilibrium point in finite time. In addition, these novel controllers are singularity‐free, and the presented adaptive NTSM control (ANTSMC) laws are chattering‐free. A rigorous proof of finite‐time convergence is developed. The proposed ANTSMC algorithms combine NTSM, adaptation and a constant plus power rate reaching law. Because the algorithms require no information about inertia uncertainties and external disturbances, they can be used in practical systems, where such knowledge is typically unavailable. Simulation results support the theoretical analysis.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
This paper explores regulation theory for the design of robust precision attitude tracking of an uncertain rigid spacecraft with external disturbances. Focusing on the attitude system in terms of unit quaternions with an unknown inertia matrix and unmodeled input disturbances, we first introduce specific nonlinear logic such that the resultant error‐quaternion system has an input‐to‐state stability property. Then, we establish an attitude deviation system with an output feedback normal form that has a strict vector relative degree of unity. This enables us to achieve robust output regulation based on an internal model. In particular, we can construct a high‐gain stabilizer for the relevant augmented system. As a major consequence, our study achieves not only precision attitude tracking with exponential convergence but also the input‐to‐state stability disturbance attenuation for the closed‐loop system. Finally, we show extensive simulation and experimental results to illustrate the approach.  相似文献   

10.
This paper investigates attitude maneuver control issues of a flexible spacecraft with pyramid‐type single gimbaled control moment gyroscopes (SGCMGs) as the actuator. The LuGre friction model is adopted to precisely describe the nonlinearity of the SGCMG gimbal friction. Aiming at restraining the adverse effects of the friction existed in SGCMG on the attitude control performance, a robust adaptive attitude controller is proposed, and projection‐based adaptive laws are presented to estimate the friction parametric uncertainties and the bound of friction nonlinearity. By treating the flexible mode coupling effect and external disturbances as lump disturbances, the inertia uncertainties and the bound of the lump disturbances are also estimated and compensated simultaneously to reduce their adverse effect on the system. With the Lyapunov technique, the states of flexible spacecraft control system are proved to be uniformly ultimately bounded. Numerical simulations demonstrate the effectiveness of the proposed scheme.  相似文献   

11.
In this paper, an adaptive fixed‐time fault‐tolerant control scheme is presented for rigid spacecraft with inertia uncertainties and external disturbances. By using an inverse trigonometric function, a novel double power reaching law is constructed to speed up the state stabilization and reduce the chattering phenomenon simultaneously. Then, an adaptive fixed‐time fault‐tolerant controller is developed for the spacecraft with the actuator faults, such that the fixed‐time convergence of the attitude and angular velocity could be guaranteed, and no prior knowledge on the upper bound of the lumped uncertainties is required anymore in the controller design. Comparative simulations are provided to illustrate the effectiveness and superior performance of the proposed scheme.  相似文献   

12.
In this paper, we develop a global set stabilization method for the attitude control problem of spacecraft system based on quaternion. The control law that uses both optimal control and finite‐time control techniques can globally stabilize the attitude of spacecraft system to a set of equilibria. First, for the kinematic subsystem, we design a virtual optimal angular velocity. To obtain the global minimum of the performance index, this optimal angular velocity is only discontinuous in initial values. It can be regarded as a combination of open loop control and closed loop control. Then for the dynamic subsystem, we design a finite‐time control law that can force the angular velocity to track the virtual optimal angular velocity. It is proved that the closed loop system satisfies global set stability in the absence of disturbances. In the presence of disturbances, the system trajectory will converge to a neighborhood of the equilibrium set. Rigorous analysis shows that by introducing finite‐time control techniques, the closed loop system possesses a better disturbance rejection property. The control method is more natural and energy‐efficient. The effectiveness of the proposed method is demonstrated by simulation results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
This paper develops two distributed finite‐time fault‐tolerant control algorithms for attitude synchronization of multiple spacecraft with a dynamic virtual leader in the presence of modeling uncertainties, external disturbances, and actuator faults. The leader gives commands only to a subset of the followers, and the communication flow between followers is directed. By employing a novel distributed nonsingular fast terminal sliding mode and adaptive mechanism, a distributed finite‐time fault‐tolerant control law is proposed to guarantee all the follower spacecraft that finite‐time track a dynamic virtual leader. Then utilizing three distributed finite‐time sliding mode estimators, an estimator‐based distributed finite‐time fault‐tolerant control law is proposed using only the followers' estimates of the virtual leader. Both of them do not require online identification of the actuator faults and provide robustness, finite‐time convergence, fault‐tolerant, disturbance rejection, and high control precision. Finally, numerical simulations are presented to evaluate the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
考虑输入受限的航天器安全接近姿轨耦合控制   总被引:1,自引:0,他引:1  
针对存在外部扰动和输入受限的航天器安全接近的问题,当扰动上界未知时,基于积分滑模控制理论设计了抗饱和的有限时间自适应姿轨耦合控制器.控制器的设计过程中采用了新型的避碰函数限制追踪航天器运动区域进而保证接近过程中航天器的安全性,同时通过辅助系统和自适应算法分别处理了输入受限和扰动上界未知.借助李雅普诺夫理论证明了在控制器的作用下系统状态在有限时间内收敛,且能够保证追踪航天器在实现航天器接近的过程中不与目标航天器发生碰撞.最后通过数字仿真进一步验证了所设计控制器的有效性.  相似文献   

15.
A new attitude control strategy for rotational manoeuvre of an elastic spacecraft is presented. Adaptive sliding mode control with hybrid sliding surface (HSS) is used to minimize the effects of uncertainties, disturbances and the difficulties arising from measurement of flexible dynamic co‐ordinates. The model of the spacecraft considered as rigid central hub and two elastic appendages. Collocated actuators and sensors are placed on the rigid central hub. Stability proof of the overall closed‐loop system is given via Lyapunov analysis. Numerical simulations show that the attitude manoeuvres can be performed precisely and the elastic deformations of the flexible substructures are suppressed as well. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents an anti‐unwinding control method for the attitude stabilization of a rigid spacecraft. Quaternion has double stable equilibrium and this may cause unwinding problems in spacecraft attitude control if both the equilibria are not considered in control design. Here, the initial condition of scalar quaternion is included in sliding surface and an anti‐unwinding control method is formulated in second‐order sliding mode. The presented second‐order sliding mode controller can alleviate chattering and ensure a smooth control for actuator. Further, to eliminate the need of advance information about bounds of uncertainty and external disturbance, adaptive laws are applied to estimate the controller gains. The closed‐loop stability is proved using the Lyapunov stability theory. In conclusion, a simulation is conducted in the presence of inertia uncertainty and external disturbances and it is found that the presented control method is efficient to negate the effect of inertia uncertainty and external disturbances, alleviate chattering, eliminate unwinding, and ensure high accuracy and steady state precision.  相似文献   

17.
Spin-axis stabilisation of spacecraft is a problem of partial stabilisation for non-linear dynamical systems. In this article the analysis of spin-axis stabilisation of underactuated rigid spacecraft in the presence of sinusoidal disturbances is presented. By using the Euler–Poisson form to describe the equations of motion and assuming the disturbances in three axes are decoupled with known frequencies, the paper first studies the problem of the underactuated rigid axisymmetric spacecraft by applying the internal modal principle to eliminate the sinusoidal disturbance. Then the paper turns to the more complicated asymmetric spacecraft, where the boundedness of the angular velocity for the underactuated axis is analysed in detail. The paper also proves the global asymptotic stability of the closed-loop systems for both axisymmetric spacecraft and asymmetric spacecraft by combining the Lyapunov direct method with the LaSalle's theorem. The simulation results show that the proposed control law is effective in the presence of sinusoidal disturbance.  相似文献   

18.
A simple control framework is proposed for the saturated attitude control of spacecraft subject to bounded disturbances. The framework is composed of three parts, that is, the quaternion part, the saturated angular velocity part, and the bounded anti‐disturbance part. The anti‐disturbance part can be different depending on the forms of disturbances. Based on a useful lemma, it can be proven that the saturation restriction on the angular velocity part can be removed in finite time, allowing us to analyze the closed‐loop stability by means of the Lyapunov theory. Two different saturated controllers are presented to exemplify the applications of the control framework. Finally, simulations are conducted to demonstrate the effectiveness of the proposed controllers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Robust decentralized attitude coordination control of spacecraft formation   总被引:1,自引:0,他引:1  
The attitude coordination control problem for multiple spacecraft is investigated in this paper. A simple decentralized variable structure coordinated controller is proposed using Lyapunov’s direct method. In the presence of model uncertainties, external disturbances and time-varying delays in the intercommunication, the presented controller can render a spacecraft formation consistent to a prespecified orientation in the globally-convergent sense. By virtue of a corollary of Barbalat’s Lemma, the convergence of the proposed controller for the resulting closed-loop system is proved theoretically. Numerical simulations are also included to demonstrate the performance of the developed controller.  相似文献   

20.
The three‐axis attitude tracking control problem in the presence of parameter uncertainties and external disturbances for a spacecraft with flexible appendages is investigated in this paper. Novel simple robust Lyapunov‐based controllers that require only the attitude and angular velocity measurement are proposed. The first controller is a discontinuous one composed of a nonlinear PD part plus a sign function, whereas the second one is continuous or even smooth by modifying the discontinuous part of the first one. For a general desired trajectory, both controllers can achieve globally asymptotic stability of the attitude and angular velocity tracking errors instead of ultimate boundedness. By using a two‐step proof technique, the partial stability of the proposed controllers for the resulting closed‐loop systems in the face of model uncertainties and unexpected disturbances is proven theoretically. To further enhance the control performance, a continuous controller is presented that utilizes the tracking errors for estimating the external disturbances. In addition, stability analysis is done. For all the developed controllers, numerical simulation results are provided to demonstrate their performance. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号