五台地区雁门关早元古代镁铁-超镁铁岩体的岩石地球化学特征、成因及其大地构造意义

万加亮, 王志洪. 2012. 五台地区雁门关早元古代镁铁-超镁铁岩体的岩石地球化学特征、成因及其大地构造意义. 岩石学报, 28(8): 2629-2646.
引用本文: 万加亮, 王志洪. 2012. 五台地区雁门关早元古代镁铁-超镁铁岩体的岩石地球化学特征、成因及其大地构造意义. 岩石学报, 28(8): 2629-2646.
WAN JiaLiang, WANG ZhiHong. 2012. Geochemistry, petrogenesis and tectonic setting of the Paleoproterozoic Yanmenguan mafic-ultramafic intrusion in the Hengshan-Wutai-Fuping area. Acta Petrologica Sinica, 28(8): 2629-2646.
Citation: WAN JiaLiang, WANG ZhiHong. 2012. Geochemistry, petrogenesis and tectonic setting of the Paleoproterozoic Yanmenguan mafic-ultramafic intrusion in the Hengshan-Wutai-Fuping area. Acta Petrologica Sinica, 28(8): 2629-2646.

五台地区雁门关早元古代镁铁-超镁铁岩体的岩石地球化学特征、成因及其大地构造意义

  • 基金项目:

    本文受国家自然科学基金项目(40772139、49973004)资助

详细信息
    作者简介:

    万加亮, 男, 1979年生, 博士生, 构造地质专业, E-mail: jl-wan@mail.iggcas.ac.cn

    通讯作者: 王志洪, 男, 博士, 研究员, 博士生导师, 主要从事大地构造学和构造地质学研究, E-mail: z-hwang@mail.iggcas.ac.cn
  • 中图分类号: P588.125

Geochemistry, petrogenesis and tectonic setting of the Paleoproterozoic Yanmenguan mafic-ultramafic intrusion in the Hengshan-Wutai-Fuping area

More Information
  • 本文对五台地区侵入于原北金岗库组的雁门关镁铁-超镁铁岩体进行了详细的岩石学、矿物学和岩石地球化学分析研究。雁门关岩体在矿物成份上, 特别是单斜辉石、尖晶石和角闪石, 具有阿拉斯加型侵入岩体和俯冲带或弧相关的岩浆特征, 其元素地球化学特征也可与阿拉斯加型侵入杂岩体类比, 具有明显的Nd (Ta), Zr (Hf), Y和Ti负异常。从构造环境判别图来看, 雁门关岩体主要为与俯冲相关的成因, 具大陆边缘弧的性质。因此, 雁门关岩体是侵入在大陆边缘弧环境的岩浆经历了橄榄石和单斜辉石的分离结晶作用的产物。它与恒山-五台-阜平地区广泛分布的同时代花岗岩和火山岩一起, 构成了华北克拉通中部造山带内一期重要的古元古代大陆边缘岛弧岩浆活动。

  • 加载中
  • 图 1 

    恒山-五台-阜平地区地质简图 (据Wang et al., 2004)

    Figure 1. 

    Geological map of the Hengshan-Wutai-Fuping area (after Wang et al., 2004)

    图 2 

    雁门关镁铁-超镁铁岩体剖面图 (修改自穆书汉, 1983)

    Figure 2. 

    Cross section of the Yanemenguan mafic-ultramafic intrusion

    图 3 

    雁门关镁铁-超镁铁岩体代表岩石的显微结构照片

    Figure 3. 

    Typical textures of the Yanmenguan mafic-ultramafic intrusion

    图 4 

    雁门关镁铁-超镁铁岩体矿物化学成分关系图

    Figure 4. 

    Mineral chemical compositions of the Yanmenguan mafic-ultramafic intrusion

    图 5 

    雁门关二辉橄榄岩尖晶石类Cr#-Mg#图 (a) 和Cr-Al-Fe3+(b) 图

    Figure 5. 

    The diagram of Mg/(Mg+Fe2+) vs. Cr/(Cr+Al) (a) and Cr-Al-Fe3+ triangle (b) for spinel in the Yanmenguan peridotites

    图 6 

    雁门关镁铁-超镁铁岩体各岩类中角闪石的成分分类图解 (a, b) 和Si-(Na+K)A图解 (c)

    Figure 6. 

    Composition diagrams of the amphibole (a, b), and plot of Si against cations in A-site of the amphibole (c) in the Yanmenguan mafic-ultramafic intrusion

    图 7 

    雁门关镁铁-超镁铁岩FeOT-MgO-Na2O+K2O图 (a, 据Irvine and Baragar, 1971) 和Al2O3-MgO-CaO图 (b, 据Coleman, 1977)

    Figure 7. 

    The diagrams of FeOT-MgO-Na2O+K2O (a, after Irvine and Baragar, 1971) and Al2O3-MgO-CaO (b, after Coleman, 1977)

    图 8 

    雁门关镁铁-超镁铁岩MgO-其它主量元素协变图

    Figure 8. 

    Plots of MgO vs. other oxides of the Yanmenguan mafic-ultramafic intrusion showing major-element variations with fractional crystallization

    图 9 

    雁门关镁铁-超镁铁岩稀土元素球粒陨石标准化配分图 (a) 和原始地幔标准化微量元素蛛网图 (b)

    Figure 9. 

    C1 chondrite-normalized REE patterns (a) and primitive mantle-normalized trace-element patterns (b) for the Yanmenguan mafic-ultramafic rocks

    图 10 

    Th-Hf-Ta (a, 据Wood, 1980) 和 (La/Sm)CN vs. Nb/La (b, 据John et al., 2003) 判别图解

    Figure 10. 

    Trace element discrimination diagrams of Th-Hf-Ta (a, after Wood, 1980) and (La/Sm)CN vs. Nb/La (b, after John et al., 2003)

  •  

    Bai J. 1986. The Early Precambrian Geology of Wutaishan. Tianjin: Tianjin Science and Technology Press, 1-190(in Chinese with English abstract)

     

    Bai J, Wang RZ and Guo JJ. 1992. The Major Geological Events of Early Precambrian and Their Age Dating in the Wutai Region. Beijing: Geological Publishing House, 1-52(in Chinese with English abstract)

     

    Barnes SJ and Roeder PL. 2001. The range of spinel composition in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42: 2279-2302

     

    Batanova VG, Pertsev AN, Kamenetsky VS, Ariskin AA, Mochalov AG and Sobolev AV. 2005. Crustal evolution of island-arc ultramafic magma: Galmoenan pyroxenites-dunite plutonic complex Koryak Highland (Far East Russia). Journal of Petrology, 46: 1345-1366

     

    Beard JS. 1986. Characteristic mineralogy of arc-related cumulate gabbros: Implications for the tectonic setting of gabbroic plutons and for andesite genesis. Geology, 14: 848-851

     

    Beard JS and Barker F. 1989. Petrology and tectonic significance of gabbros tonalities shoshonites and anorthosites in a Late Paleozoic arc-root complex in the Wrangellia terrane southern Alaska. Journal of Geology, 97: 667-683

     

    Béziat D, Bourges F, Debat P, Lompo M, Martin F and Tollon F. 2000. A Paleoproterozoic ultramafic-mafic assemblage and associated volcanic rocks of the Boromo greenstone belt: Fractionates originating from island-arc volcanic activity in the West African craton. Precambrian Research, 101(1): 25-47

     

    Burns LE. 1985. The Border Ranges ultramafic and mafic complex south-central Alaska-cumulate fractionates of island-arc volcanics. Canadian Journal of Earth Sciences, 22: 1020-1038

     

    Coleman RG. 1977. Ophiolite-Ancient Oceanic Lithosphere?Berlin: Springer Verlag

     

    DeBari SM and Coleman RG. 1989. Examination of the deep levels of an island arc: Evidence from the Tonsina ultramafic-mafic assemblage Tonsina Alaska. Journal of Geophysical Research, 94: 4373-4391

     

    Deer WA, Howie RA and Zusman J. 1992. An Introduction to the Rock-Forming Minerals. 2nd Edition. Essex: Longman U.K., 1-696

     

    Dick HJB, Fisher RL and Bryan WB. 1984. Mineralogic variability of the uppermost mantle along mid-ocean ridges. Earth and Planetary Science Letters, 69: 88-106

     

    Faure M, Trap P, Lin W, Monie P and Bruguier O. 2007. Polyorogenic evolution of the Paleoproterozoic Trans-North China Belt, new insights from the Lüliangshan-Hengshan-Wutaishan and Fuping massifs. Episodes, 30: 1-12

     

    Gan GL. 1993. Mineral-melt element partition coefficients: Data and major variation regularities. Acta Petrologica et Mineralogica, 12(2): 144-181(in Chinese with English abstract)

     

    Geng YS, Wan YS, Shen QH, Li HM and Zhang RX. 2000. Chronological framework of the Early Precambrian important events in the Lüliang area, Shanxi Province. Acta Geologica Sinica, 74(3): 216-223(in Chinese with English abstract)

     

    Geng YS, Yang CH and Wan YS. 2006. Paleoproterozoic granitic magmatism in the Lüliang area, North China Craton: Constraint from isotopic geochronology. Acta Petrologica Sinica, 22(2): 305-314 (in Chinese with English abstract)

     

    Guan H, Sun M, Wilde SA, Zhou XH and Zhai MG. 2002. SHRIMP U-Pb zircon geochronology of the Fuping Complex: Implications for formation and assembly of the North China Craton. Precambrian Research, 113: 1-18

     

    Himmelberg GR, Loney RA and Craig JT. 1986. Petrogenesis of the ultramafic complex at the Blashke Islands Southern Alaska. US Geological Survey Bulletin, 1662: 1-14

     

    Himmelberg GR and Loney RA. 1995. Characteristics and petrogenesis of Alaskan-type ultramafic-mafic intrusions Southeastern Alaska. US Geological Survey Professional Papers, 1564: 1-47

     

    Irvine TN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8: 523-548

     

    Irvine TN. 1974. Petrology of the Duke Island Ultramafic Complex Southern Alaska. Geological Society of America Memoirs, 138: 1-240

     

    John T, Schenk V, Haase K, Scherer E and Tembo F. 2003. Evidence for a Neoproterozoic ocean in south-central Africa from midoceanic-ridge-type geochemical signatures and pressure-temperature estimates of Zambian eclogites. Geology, 31: 243-246

     

    Krause J, Brügmann GE and Pushkarev EV. 2007. Accessory and rock forming minerals monitoring the evolution of zoned mafic-ultramafic complexes in the Central Ural Mountains. Lithos, 95: 19-42

     

    Kröner A, Wilde SA, Li JH and Wang KY. 2005a. Age and evolution of a Late Archaean to Early Palaeozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences, 24: 577-595

     

    Kröner A, Wilde SA, O'Brien PJ, Li JH, Passchier CW, Walte NP and Liu DY. 2005b. Field relationships, geochemistry, zircon ages and evolution of a Neoarchaean to Palaeoproterozoic lower crustal section in the Hengshan Terrain of northern China. Acta Geologica Sinica, 79: 605-29

     

    Kusky TM and Li JH. 2003. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences, 22: 383-397

     

    Kusky TM, Li JH, Glass A and Huang XN. 2004. Origin and emplacement of Archean ophiolites of the Central Orogenic belt, North China craton. In: Kusky TM (ed.). Precambrian Ophiolites and Related Rocks. Amsterdam: Elsevier, Developments in Precambrian Geology, 13: 223-274

     

    Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Ha wthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW and Guo Y. 1997. Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. American Mineralogist, 82: 1019-1037

     

    Leake BE, Woolley AR, Birch WD, Burke EAJ, Ferraris G, Grice JD, Hawthorne FC, Kisch HJ, Krivovichev VG, Schumacher JC, Stephenson NCN and Whittaker EJW. 2004. Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association's Amphibole Nomenclature. American Mineralogist, 88: 883-887

     

    Li JH, Kusky TM and Huang XN. 2002. Archean podiform chromitites and mantle tectonites in ophiolitic melange, North China Craton: A record of early oceanic mantle processes. GSA Today, 12(7): 4-11

     

    Li JH, Kusky TM, Niu XL and Feng J. 2004. Neoarchean massive sulfide of Wutai Mountain, North China: A black smoker chimney and mound complex within 2.50Ga old oceanic crust. In: Kusky TM (ed.). Precambrian Ophiolites and Related Rocks. Amsterdam: Elsevier, Developments in Precambrian Geology, 13: 339-361

     

    Li JL, Wang KY, Wang QC, Liu XH and Zhao ZY. 1990. Early Proterozoic collision orogenic belt in Wutaishan area China. Scientia Geologica Sinica, 25(1): 1-11(in Chinese with English abstract)

     

    Liu YS, Gao S, Kelemen PB and Xu WL. 2008. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochimica et Cosmochimica Acta, 72(9): 2349-2376

     

    Loucks RR. 1990. Discrimination of ophiolitic from nonophiolitic ultramafic-mafic allochthons in orogenic belts by the Al/Ti ratio in clinopyroxene. Geology, 18: 346-349

     

    Pearce JA and Gale GH. 1977. Identification of ore-deposition environment from trace element geochemistry of associated igneous host rocks. Geological Society of London Special Publication, 7: 14-24

     

    Peng P, Zhai MG, Zhang HF and Guo JH. 2005. Geochronological constraints on the Palaeoproterozoic evolution of the North China craton: SHRIMP zircon ages of different types of mafic dikes. International Geology Review, 47: 492-508

     

    Pettigrew NT and Hattori KH. 2006. The Quetico intrusions of Western Superior Province: Neo-Archean examples of Alaskan/Ural-type mafic-ultramafic intrusions. Precambrian Research, 149(1-2): 21-42

     

    Polat A, Kusky TM, Li JH, Fryer B, Kerrich R and Patrick K. 2005. Geochemistry of Neoarchean (ca. 2.55~2.50Ga) volcanic and ophiolitic rocks in the Wutaishan greenstone belt central orogenic belt North China Craton: Implications for geodynamic setting and continental growth. Geological Society of America Bulletin, 117: 1387-1399

     

    Simpkin T and Smith JV. 1970. Minor-element distribution in olivine. Journal of Geology, 78: 304-325

     

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in Ocean Basins. Geological Society of London Special Publication, 42: 313-345

     

    Thiéblemont D and Tegyey M. 1994. Une discrimination géochimique des roches différenciées témoin de la diversité d'origine et de situation tectonique des magmas calco-alcalins. Comptes Rendus de l'Academie des Sciences Série 11A, 319: 87-94

     

    Tian YQ. 1991. Geology and Mineralization of the Wutai-Hengshan Greenstone Belt. Taiyuan: Shanxi Science and Technology Press, 1-155(in Chinese with English abstract)

     

    Torres-Alvarado IS, Verma SP, Palacios-Berruete H, Guevara M and Gonzlez-Castillo OY. 2003. DC_BASE: A database system to manage Nernst distribution coefficients and its application to partial melting modeling. Computer and Geosciences, 29: 1194-1198

     

    Trap P, Faure M, Lin W and Monié P. 2007. Late Paleoproterozoic (1900~1800Ma) nappe stacking and polyphase deformation in the Hengshan-Wutaishan area: Implications for the understanding of the Trans-North-China Belt, North China Craton. Precambrian Research, 156: 85-106

     

    Vil M, Pin C, Enrique P and Liesa M. 2005. Telescoping of three distinct magmatic suites in an orogenic setting: Generation of Hercynian igneous rocks of the Albera Massif (Eastern Pyrenees). Lithos, 83(1-2): 97-127

     

    Wang KY, Li JL, Hao J, Li JH and Zhou SP. 1996. TheWutaishan orogenic belt with in the Shanxi Province, N. China: A record of late Archaean collision tectonics. Precambrian Research, 78: 95-103

     

    Wang KY, Li JL, Hao J, Chai YC and Zhou SP. 1997. Late Archaean mafic-ultramafic rocks from the Wutaishan Shanxi Province: A possible ophiolite melange. Acta Petrologica Sinica, 13(2): 139-151(in Chinese with English abstract)

     

    Wang KY and Wilde SA. 2002. Precise SHRIMP U-Pb ages of Dawaliang granite in Wutaishan area, Shanxi Province. Acta Petrologica et Mineralogica, 21(4): 407-411(in Chinese with English abstract)

     

    Wang ZH, Wilde SA, Wang KY and Yu LJ. 2004. A MORB-arc basalt-adakite association in the 2.5Ga Wutai greenstone belt: Late Archean magmatism and crustal growth in the North China Craton. Precambrian Research, 131: 323-343

     

    Wang ZH. 2009. Tectonic evolution of the Hengshan-Wutai-Fuping complexes and its implication for the Trans-North China Orogen. Precambrian Research, 170: 73-87

     

    Wang ZH, Wilde SA and Wan JL. 2010. Tectonic setting and significance of the 2.1~2.3Ga events in the Trans-North China Orogen: New constraints from the Yanmenguan mafic-ultramafic intrusion in the Hengshan-Wutai-Fuping area. Precambrian Research, 178: 27-42

     

    Wilde SA, Cawood P and Wang KY. 1997. The relationship and timing of granitoid evolution with respect to felsic volcanism in the Wutai Complex North China Craton. Proceedings of the 30th IGC Precambrian Geology and Metamorphic Petrology, 17: 75-88

     

    Wilde SA. 2002. SHRIMP U-Pb zircon ages of the Wutai Complex. In: Kröner A, Zhao GC, Wilde SA, Zhai MG, Passchier CW, Sun M, Guo JH, O'Brien PJ and Walte N (eds.). A Neoarchaean to Palaeoproterozoic Lower to Upper Crustal Section in the Hengshan-Wutaishan area of North China. Guidebook for Penrose Conference Field Trip, September 2002. Beijing: Chinese Academy of Sciences, 32-34

     

    Wilde SA, Zhao GC and Sun M. 2002. Development of the North China Craton during the Late Archaean and its final amalgamation at 1.8Ga: Some speculations on its position within a global Palaeoproterozoic Supercontinent. Gondwana Research, 5: 85-94

     

    Wilde SA, Cawood PA, Wang KY, Nemchin A and Zhao GC. 2004a. Determining Precambrian crustal evolution in China: A case study from Wutaishan Shanxi Province demonstrating the application of precise SHRIMP U-Pb geochronology. In: Malpas J, Fletcher CJN, Ali JR and Aichison JC (eds.). Aspects of the Tectonic Evolution of China. Geological Society of London Special Publication, 226: 5-26

     

    Wilde SA, Zhao GC, Wang KY and Sun M. 2004b. First SHRIMP zircon U-Pb ages for the Hutuo Group in Wutaishan: Further evidence for amalgamation of North China Craton. Chinese Science Bulletin, 49: 83-90

     

    Wilde SA, Cawood PA, Wang KY and Nemchin AA. 2005. Granitoid evolution in the Late Archean Wutai Complex: North China Craton. Journal of Asian Earth Sciences, 24: 597-613

     

    Wilson M. 1989. Igneous Petrogenesis. Boston MA: Unwin Hyman, 1-466

     

    Wood DA. 1980. The application of a Th-Hf-Ta diagram to problems of tectomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50: 11-30

     

    Xia XP, Sun M, Zhao GC, Wu FY, Xu P, Zhang JH and He XH. 2006. U-Pb and Hf isotope study of detrital zircons from the Wanzi supracrustals: Constraints on the tectonic setting and evolution of the Fuping Complex, Trans-North China Orogen. Acta Geologica Sinica, 80: 844-863

     

    Yu JH, Wang DZ, Wang CY and Li HM. 1997. Ages of the Lüliang Group and its main metamorphism in the Lüliang Mountains, Shanxi: Evidence from single grain zircon U-Pb ages. Geological Review, 43(4): 403-408(in Chinese with English abstract)

     

    Zhai MG, Bian AG and Zhao TP. 2000. The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during late Palaeoproterozoic and Mesoproterozoic. Science in China (Series D), 43: 219-232

     

    Zhao GC, Wilde SA, Cawood PA and Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107: 45-73

     

    Zhao GC, Wilde SA, Cawood PA and Sun M. 2002. SHRIMP U-Pb zircon ages of the Fuping Complex: Implications for Late Archean to Paleoproterozoic accretion and assembly of the North China Craton. American Journal of Science, 302: 191-226

     

    Zhao GC, Sun M, Wilde SA and Guo JH. 2004. Late Archean to Paleoproterozoic evolution of the Trans-North China Orogen: Insights from synthesis of existing data from the Hengshan-Wutai-Fuping belt. In: Malpas J, Fletcher CJ, Aitchison JC and Ali J (eds.). Aspects of the Tectonic Evolution of China. Geological Society of London Special Publication, 226: 27-56

     

    Zhao GC, Liu SW, Sun M, Li SZ, Wilde S, Xia XP, Zhang J and He YH. 2006. What Happened in the Trans-North China Orogen in the period 2560~1850Ma?Acta Geologica Sinica, 80: 790-806

     

    Zhao GC, Kroner A, Wilde SA, Sun M, Li SZ, Li XP, Zhang J, Xia XP and He YH. 2007. Lithotectonic elements and geological events in the Hengshan-Wutai-Fuping belt: A synthesis and implications for the evolution of the Trans-North China Orogen. Geological Magazine, 144: 753-775

     

    Zhao GC, Wilde S, Sun M, Li SZ, Li XP and Zhang J. 2008. SHRIMP U-Pb zircon ages of granitoid rocks in the Lüliang Complex: Implications for the accretion and evolution of the Trans-North China Orogen. Precambrian Research, 160: 213-226

     

    Zhou MF, Lightfoot PC, Keays RR, Moore ML and Morrison GG. 1997. Petrogenetic significance of chromian spinels from the Sudbury Igneous Complex Ontario Canada. Canadian Journal of Earth Sciences, 34: 1405-1419

  • 加载中

(10)

计量
  • 文章访问数:  6179
  • PDF下载数:  7306
  • 施引文献:  0
出版历程
收稿日期:  2008-11-18
修回日期:  2011-04-09
刊出日期:  2012-08-01

目录