首页 | 官方网站   微博 | 高级检索  
     

槽式太阳能直接蒸汽发生系统的热力特性研究
作者姓名:楚攀  白凤武  黄长华  陈澜
作者单位:1.中国科学院电工研究所, 北京 100190
基金项目:中国能建广东院科技项目“大规模综合储能发电系统的关键技术研究”EV04001W
摘    要:  目的]  研究典型的槽式直接蒸汽循环系统的热力性能,给出该系统的结构组成和主要性能参数。针对DSG系统的两相区复杂的换热问题,结合两相区的实际流型,考虑分层现象对实际换热过程的影响,更加准确地对两相区的换热过程进行模拟研究。  方法]  基于槽式集热器内的流动型态,建立槽式集热两相区内的传热模型,利用Matlab编程,针对槽式集热器内的DSG过程进行模拟。  结果]  揭示了DSG技术沿着管长方向的换热特性变化规律,分层现象大约出现在两相流区域干度为0.7~0.8之间的位置,分层现象的出现降低了管内工质与金属管管壁之间的对流换热系数,减弱了换热效果。  结论]  该研究为DSG电站的设计和运行提供了参考依据,验证了DSG集热场的最佳布置方式为再循环式。

关 键 词:槽式    直接蒸汽发生系统    两相区    再循环式    聚光太阳能热发电
收稿时间:2018-11-21

Thermal Performance Analysis of a Parabolic Trough DSG System
Affiliation:1.Institute of Electrical Engineering, Chinese Academy of Sciences, Beijng 100190, China2.China Energy Engineering Group Guangdong Electric Power Design Institute Co., Ltd., Guangzhou 510663, China
Abstract:  Introduction]  In this paper, the thermal performance of a parabolic trough direct steam generation system (DSGS) is investigated. With the considerations of the stratified flow phenomenon and real flow patterns in the complex two-phase flow, the heat transfer progress in the DSG system is numerically studied, and the thermodynamic performances are revealed.  Method]  Based on the flow pattern inside the trough collector, the two-phase heat transfer model in the trough-type heat collecting region was established, and the DSG process in the trough collector was simulated by MatLab programming.  Result]  The variation of heat transfer characteristics of DSG technology along the length of the tube is revealed. The stratification phenomenon occurs in the two-phase flow region where the dryness is between 0.7 and 0.8. The occurrence of delamination reduces the heat transfer between the working medium and metal tube, which weakens the heat transfer effect.  Conclusion]  This study provides a reference for the design and operation of DSG power stations, and verifies that the optimal arrangement of DSG collectors is recirculating.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《》浏览原始摘要信息
点击此处可从《》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号