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various channels as well as the structural parameters of the heat exchanger. As a result, obtained were the fluid tempera-
ture distribution of various channels and the fluid temperature difference of neighboring channels. Furthemore, analyzed
was the effect of the variation of fluid parameters, flow modes and stwuctural parameters on the fluid temperature cwssover
of the neighboring channels. Key words: multi-strean plate-fin heat exchanger, temperature crossover, fin bypass, flow
mode

= The Study of a New Method Incorporating the Soft Sensing of Oxygen-content
inFlue Gases[ , ]/ LU Yong, XU Xiang-dong (Department of Themal Engineering, Tsinghua University, Bei-
jing, China, Post Code: 100084) //Journal of Engineering for Themal Energy &Power. — 2002, 17(6). — 614~
617
In view of the high first cost of conventional oxygen-content analyzers for industrial applications, their high maintenance
expenses and low durability the authors have on the basis of comparing several commonly used methods come up with a
new method for measuring oxygen content in flue gases. The proposed method involves an oxygen-content soft sensing
model set up through the use of a NNPIS (neutral network partial least square) approach based on statistical analyses and
neural network technology. Tt enjoys both the merits of PLSR (partial least square regression) and neural network tech-
nology, making it possible to identify a target model by utilizing historical process data. A simulation verification of the
method has been conducted by using on-site industrial data. In addition, the simulation results are compared with tradi-
tional linear PLSR method and the direct neural network-based modeling method. The results of comparison indicate that
the soft sensing model based on the NNPLS approach features a more effective generalizing ability. Furthermore, an ex-
tension of a static model to a dynamic one was also performed. Key words: soft sensing, partial two least squares, neu-

ral network, cwss validation, generalizing ability

= A Study of the Predictive Control of a Boiler Combustion
System through the Correction of a Forecast Error [ , ]/ ZHU Xue-li, QI Wei-gui, LI Li-yan (School of Elec-
tric Engineering and Automation under the Harbin Institute of Technology, Harbin, China, Post Code: 150001) //Jour-
nal of Fngineering for Thermal Energy &Power. — 2002, 17(6). —618 ~621
To improve the performance of a hoiler-combustion control system, a dynamic matrix control (DMC ) - based algorithm
with the correction of a forecast error has been put foward to fulfill relevant control functions. After a brief description of
the DMC composition and an internal-model control structure a model error is predicted based on a time sequence analy-
sis, parameter estimation and an optimum forecast theory. Furthermore, by forecasting the model error and using the
model forecast error to replace the model error the rolling optimization of a predictive cwntwl can be duly corrected. Final-
ly, through the simulation tests of the predictive control for the boiler wntwol system it is shown that the correction of the
forecast error can result in a marked improvement in such characteristics as tracking ability, anti-interference and robust-
ness when compared with an error correction algorithm in general. Key words: combustion system, predictive control

tlime sequence, forecast error

=The Application of Lawrence Algorithm in the Identification of
Dynamic Behavior of Thermodynamic Objects| . ]/ XU Hou-gian, JIANG Gui-zhen (Power Engineering College
under the Nanjing University of Science & Technology, Nanjing, China, Post Code: 210094) //Journal of Engineering
for Thermal Energy &Power. — 2002, 17(6). —622~624
Described is the pwcess of a transfer-function fitting performed through the use of Lawwence algorithm by way of frequency
domain data. Furthemore, the above method was employed to conduct the fitting of trangfer functions for a split-shaft gas
turbine under three operating conditions. Under various operating conditions the results of fitting agre relatively well with

those of experiments, testifying to the credibility, of the Tawrence algorithm. , In addition, by using a method, which. com-



