首页 | 官方网站   微博 | 高级检索  
     

激光熔覆VC-Cr7C3复合熔覆层的组织与力学性能
引用本文:王皓民,汪国庆,熊杨凯,江昊,赵远涛,方志强,李文戈.激光熔覆VC-Cr7C3复合熔覆层的组织与力学性能[J].金属热处理,2022,47(11):245-252.
作者姓名:王皓民  汪国庆  熊杨凯  江昊  赵远涛  方志强  李文戈
作者单位:1.海南大学 材料科学与工程学院, 海南 海口 570228; 2.上海海事大学 商船学院, 上海 201306
基金项目:海南省自然科学基金(512115)
摘    要:采用激光熔覆技术在Q235钢表面原位合成了VC-Cr7C3复合熔覆层,并研究激光扫描速度对熔覆层微观组织与力学性能的影响。利用扫描电镜、X射线能谱仪和X射线衍射仪等对熔覆层组织及性能进行分析。结果表明,激光熔覆技术可使V、Cr、C混合颗粒间发生原位反应形成VC-Cr7C3复合熔覆层,其主要由黑灰色VC相、灰色Cr7C3相及{FeM}粘结相组成,其中Fe与Cr可共同形成Cr7C3相(M7C3)。激光熔覆凝固形状控制因子K与C元素的分布状况使得熔覆层顶部出现大量碳化物等轴晶组织,中部碳化物等轴晶的含量有所减小,而底部由于C含量较低,其碳化物含量较少,且碳化物晶粒形貌受到激光扫描速度的影响,在1 mm/s时碳化物呈树枝晶组织,在1.5 mm/s时呈等轴晶组织。同时在1.5 mm/s时熔覆层晶粒尺寸明显小于1 mm/s时的。以上熔覆层组织结构与成分变化使其硬度随层深的增加而降低,同时随着扫描速度的增加,熔覆层的硬度也逐渐增加,熔覆层的硬度高于Q235钢3倍以上。在1.5 mm/s时熔覆层摩擦因数为0.4,低于Q235钢基材的0.6,且熔覆层磨损量显著低于Q235钢基材。由此可知,激光熔覆VC-Cr7C3复合熔覆层可用于碳钢的表面高硬、耐磨改性。

关 键 词:激光熔覆  原位合成  VC-Cr7C3复合熔覆层  显微硬度  耐磨性  
收稿时间:2022-07-27

Microstructure and mechanical properties of laser clad VC-Cr7C3 composite layers
Wang Haomin,Wang Guoqing,Xiong Yangkai,Jiang Hao,Zhao Yuantao,Fang Zhiqiang,Li Wenge.Microstructure and mechanical properties of laser clad VC-Cr7C3 composite layers[J].Heat Treatment of Metals,2022,47(11):245-252.
Authors:Wang Haomin  Wang Guoqing  Xiong Yangkai  Jiang Hao  Zhao Yuantao  Fang Zhiqiang  Li Wenge
Affiliation:1. School of Materials Science and Engineering, Hainan University, Haikou Hainan 570228, China; 2. School of Merchant Marine, Shanghai Maritime University, Shanghai 201306, China
Abstract:Composite clad layer of VC-Cr7C3 was in situ synthesized on the surface of Q235 steel using laser cladding technology, and the effect of laser scanning speed on microstructure and mechanical properties of the clad layer was studied. The microstructure and properties of the clad layer were analyzed by means of scanning electron microscope, X-ray energy dispersive spectrometer and X-ray diffractometer. The results show that laser cladding technology can cause in-situ reactions between mixed particles of V, Cr and C to form a composite clad layer of VC-Cr7C3. It is mainly composed of black gray VC phase, gray Cr7C3 phase and {FeM} bonding phase, in which Fe and Cr can form Cr7C3 phase (M7C3). The laser cladding solidification shape control factor K and the distribution of C element result in a large amount of carbide equiaxed crystals at the top of the clad layer, with a reduced amount of carbide equiaxed crystals in the middle and less carbide at the bottom due to the low C content. The carbide shape is influenced by the laser scanning speed, with carbide dendrites appearing at 1 mm/s and carbide equiaxed crystals at 1.5 mm/s. At the same time, the grain size of the clad layer at 1.5 mm/s is significantly smaller than 1 mm/s. The above changes in the structure and composition of the clad layer cause its hardness to decrease as the layer depth increases. As the scanning speed increases, the hardness of the clad layer gradually increases, with the hardness of the clad layer being more than three times higher than that of the Q235 steel. The friction coefficient of the clad layer is 0.4 at 1.5 mm/s, which is lower than the 0.6 of the Q235 steel substrate. The significant lower wear loss of the clad layer compared to that of the Q235 steel substrate indicates that the composite clad layer of VC-Cr7C3 can be used to modify the surface of the carbon steel for high hardness and wear resistance.
Keywords:laser cladding  in situ synthesis  VC-Cr7C3 composite layers  microhardness  wear resistance  
点击此处可从《金属热处理》浏览原始摘要信息
点击此处可从《金属热处理》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号