
1 INTRODUCTION

In underwater passive tracking， the time-
varying state of the targets such as location
and velocity can be measured and estimated
by several sonars mounted on one certain
platform. For example， the hull-mounted array
（HMA） sonar and the towed linear array （TLA）
sonar are two of the standard devices for mo-
dern surface ships. In practice， it is not usual-
ly for the two types of sonars to work simul-
taneously. Hence， it is a much common tacti-
cal decision to detect and track the long-range
targets by the monostatic sonar， TLA sonar for
example. It is well known that the TLA sonar ca-
nnot provide the target′ s range information.
One of the effective ways is to use the esti-
mation techniques， such as Kalman Filtering.

In the bearing-only tracking （BOT）， the
information of target′ s bearing can only be
used. In order to make the state equation of the
system solvable， i.e. the system is observable，
the following conditions must be satisfied:

（1） In monostatic passive tracking， it is ne-

cessary for the ownship to make maneuvers ［1］.
It can be proved that when the derivative of
the ownship′ s trajectory is one order higher
than that of the target， the system is obser-
vable［2］.

（2） In bistatic passive tracking， the system
is observable when the trajectory of the target
does not superpose with the joint line bet-
ween the two observers［2］.

If the observability of the system is achi-
eved， the state of the target can be solved by
the estimators. Under the framework of Bay-
esian estimation theory， the full posterior pro-
bability density of the state given by all the
observations constitutes a complete solution to
the state estimation problem［3］， so we can cal-
culate out any optimal estimates of the state
by recursively computing a marginal of the po-
sterior filtering density. For a linear Gaussian
tracking problem， the optimal Bayesian solution
can be achieved by Kalman Filter （KF）. But un-
fortunately， most of the tracking problems in pr-
actice are very complex， usually nonlinear， non-
Gaussian， and non-stationary. This difference ev-
okes model-mismatching and makes KF fail to
provide satisfying solutions. Therefore， some
other techniques have been adopted to handle
this problem， among which the extended Kal-
man Filter （EKF） is the most famous one ［4，5］.
However， EKF approximates the nonlinearity
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by linearization， so that it is only effective in
solving weak nonlinear problems. In the scena-
rios with strong nonlinearity， EKF-based algo-
rithms usually give estimation with low accu-
racy， and the filter is much more instable and
tends to be divergent［6］.

In order to overcome the drawbacks of E-
KF， the Unscented Transform （UT）［7］has been
adopted recently in KF to produce a type of
new filter named Unscented Kalman Filter
（UKF）. UKF does not approximate the nonlin-
ear functions by linearization as the EKF does.
Instead， it approximates the posterior probabi-
lity by a Gaussian density. The posterior pro-
bability can be represented by a set of deter-
ministically samples. As a result， the statistics
with the first two orders of the Gaussian den-
sity can be calculated by these samples， and
the nonlinearity embedded in the state transi-
tion and mea-surements can be approximated
up to the second order by UKF without any
explicit information［6］.

In this paper， UKF is used to handle the cl-
assic underwater BOT problem， and the re-
sults are compared with those of EKF.

2 TRACKING MODELS BASED ON
BEARING MEASUREMENTS

2.1 Mathematical models
For a tracking problem， the state vector

Xk∈R
nx is assumed to evolve according to the

following discrete-time stochastic process
Xk=f（Xk-1，vk） （1）

where f:R
nx×R

nv→R
nx is a known， possibly non-

linear transition function of the system； vk∈R
nv

refers to the independent and identically distri-
buted sampling sequence of the process noise
with known probability density function. The
state vector Xk is assumed to be independent
from the process noise. Therefore， it is a first
order Markovian process.

The measurements of yk∈R
ny related to

the target state are given by the measurement
equation as follows:

yk=h（Xk，wk） （2）

where h:R
nx ×R

nwn→R
ny is the measurement fu-

nction； nk∈R
nw is the sample sequence of the

measurement noise process which is indepen-

dent from the states and the process noise，
and can also be modeled as mutually indepen-
dent and identically distributed with known pr-
obability density function.

Hence， the explicit forms of f and h are kn-
own， and the initial density function p（X0 y0 ）≡
p（X0） is also available. The states correspond
to a Markov process and the measurements are
conditionally independent of the given states.
2.2 General formulation

For two-dimensional （2D） underwater BOT
problems， the measurements of the target are
the bearings observed by spatially distributed
sonars. Following Equation （1）， the target dy-
namics can be described as

Xk=AXk-1+Gvk （3）
where

A=
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and

Xk=

xk

x觶 k
yk

y觶 k

△
△
△
△△
△

△
△
△
△△
△

T

vk=
vkx
vk
△ △y ，

where △t is the sampling interval; （xk，yk） is
the position of target in Cartesian coordinates
at instant k； x觶 k and y觶 k denote the components
of velocity at instant k， respectively； vk is a 2
by 1 i.i.d （independent identical distribution）
process noise vector whose mean is zero and
covariance is Qk .

The observers make noisy measurements
of the target angle as follows

qk，i=tan-1（ xk-xi，k

yk-yi，k
）＋wk，i， i=1，…，N （4）

where θk，i denotes the bearing of target obtained
by the ith observer （with a number of N） at
instant k； （xi，k，yi，k） is the position of the ith
observer at instant k； wk，i is an N by 1 i.i.d
measurement noise vector whose mean is zero
and covariance is Rk.

3 NONLINEAR FILTERING

In order to estimate the state vector as
shown in Equation （1）， the nonlinear filtering
techniques should be adopted to handle the
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nonlinearity confronted in the bearing measure-
ments described by Equation （3）. The discuss-
ion of tracking methods will focus on the foll-
owing two filters.
3.1 EKF

The EKF handles the nonlinearity by linea-
rizing the nonlinear function to the first order，
and then converting the nonlinear estimation
problem into a linear one so that it can be
solved via the standard KF. In BOT， the non-
linearity only exists in the measurement equa-
tion， which can be linearized as

θk=HkXk+wk （5）
where θk=［q1，k，…，qN，k］T， wk=［w1，k，…，wN，k］T， Xk=
［xk，xk，yk，yk］T， and the linearisation of measu-
rement matrix Hk is given by

Hk=

△y1，k|k-1

r 1，k|k-1

2 ，0，-△x1，k|k-1

r 1，k|k-1

2 ，0

△yN，k|k-1

r N，k|k-1

2 ，0，-△xN，k|k-1

r N，k|k-1

2 ，

，
，
，
，
，
，
，

，
，
，
，
，
，
，

0

（6）

where
△xi，k|k-1=xk|k-1-xi，k； △yk|k-1=yk|k-1-yi，k

ri，k|k-1= （△xi，k|k-1）2＋（△yi，k|k-1）2姨
（xk|k-1，yk|k-1） is the predicted position of the tar-
get at instant k， and ri，k|k-1 is a relative dista-
nce associated with the ith observer. The
posi-tions of the observers during the
observation are assumed to be known.

The solution step of EKF formulated by
Equation （3） and （5） resembles the standard
Kalman Filter.
3.2 UKF

Unlike EKF， UKF captures the statistics
by using the unscented transform to estimate
the mean and covariance of a stochastic pr-
ocess. It abides by the principle that it is ea-
sier to approximate a probability distribution than
an arbitrary nonlinear function［6］. The most co-
mputation-costly operation in UKF is the cal-
culation of the square root of the covariance
matrix of the state vector at each instant in
order to form the square set.

Let Pk ， Qk and Rk denote the covariance
of Xk ， vk ， wk and with known initial values
P0 ， Q0 and R0 ， respectively. And the estima-
tion of the initial state X0 is also assumed to be
available. Then， UKF algorithm can be imple-
mented recursively in the following four steps.
3.2.1 Augmentation

At instant k， the augmented state vector
χk can be defined as

χk=［Xk vk wk ］T （7）
where χk∈Rn， n=nx+nv+nw .

Following the discussion presented in sec-
tion 2.1， along with Equation （7）， the covari-
ance of χk can be written as

Φk=diag｛Pk Qk Rk ｝ （8）
where Φk denotes the covariance at instant k，
and diag｛·｝ denotes the block diagonal matrix.

The initial estimation of the augmented
state vector and its covariance are given by

χ赞 0=E［χ0］＝［X赞 0 0 0］T
Φ0=diag｛P0 ，Q0 ，R0 ｝ （9）

where X赞 0 is the estimation of the mean of X0.
3.2.2 Calculation of the Sigma points and their

weights
The （2n+1） sigma points Xi，k and their wei-

ghts Wi at instant k can be calculated by
X0，k=χk
W0= κ

n+κ
（i=0）

Xi，k=χ赞 k+（ （n+κ）Φk姨 ）

Wi＝ 1
2（n+κ）

（i=1，…，n）

Xi，k=χ赞 k-（ （n+κ）Φk姨 ）

Wi＝ 1
2（n+κ）

（i=n+1，…，2n） （10）

where κ is a scaling parameter which controls
the distance of the sigma points from the
mean， and （ （n+κ）Φk姨 ）i is the ith column of
square root of （n+κ）Φk.
3.2.3 Prediction

The sigma points propagate through the
nonlinear function

Xi，k=f（Xi，k）
zi，k=h（Xi，k
∈ ）

， i=0，…，2n （11）

So， we can predict the mean and covariance as
follows

X赞 k＋1|k=
2n

i=0
ΣWi·f（Xi，k）

z赞 k＋1|k=
2n

i=0
ΣWi·h（Xi，k）

Pzz=Rk+1+
2n

i=0
ΣWi（h（Xi，k）-z赞 k＋1|k）（h（Xi，k）-z赞 k＋1|k）T

Pxz=
2n

i=0
ΣWi（f（Xi，k）-X赞 k＋1|k）（h（Xi，k）-z赞 k＋1|k）T （12）

3.2.4 Update
Following equation （12）， the filter gain can

… … … …
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Fig.2 Square root of the estimated position of the target in
the monostatic scenario: （a） position x; （b） position
y. The bearings are measured every 30 seconds.
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be calculated by
Kk+1=PxzPzz

-1 （13）
Then， the update procedure can be expressed
by

X赞 k＋1|k+1=X赞 k＋1|k+Kk+1（zk＋1＋z赞 k＋1|k） （14）
Pk＋1|k+1=Pk＋1|k+Kk+1PzzKk+1

T （15）
Note that UKF requires the computation of a
matrix square root in （10）， which can be done
by using Cholesky factorisation.

4 NUMERICAL SIMULATIONS

In this section， EKF and UKF will be
applied to BOT problems in monostatic and
bistatic scenarios， respectively. The simulation
conditions are given as follows:

The process noise vk in Equation （3） and
measurement noise wk in Equation （4） are as-
sumed to be additive Gaussian white noise
with the constant covariance， respectively.

Q=qaI2
R=qθIM （16）

where qa姨 =0.001 km/s2， qθ姨 =0.01745 rad. I2
and IM are two identity matrix with the dimen-
sion of 2 and M （M=1 for monostatic， M=2 for
bistatic）.

The trajectories of the target （submarine）
and ownship are shown in Fig.1 where the
ownship makes maneuver to ensure the
observability in monostatic scenario. In bistatic
situation， the trajectory of ownship does not
change for convenience to make comparisons.
In both scenarios given above， the target
makes maneuver with zigzag-like line to
escape. The total observation period lasts 25
minutes during which the bearing of the target

is measured every 30s （with the total measu-
rements of 50）. The initial state is estimated
with respect to the realistic sonar device in an
empirical way.

The performance of these two estimators
is studied via Monte-Carlo simulations. The
results of target state estimation are shown in
Fig.2 and 3. The bearing of target is only
observed by TLA sonar in the monostatic
scenario， and by the HMA sonar and TLA
sonar simultaneously in the bistatic scenario.
As shown in Fig.2， the estimation error of
both filters increases slowly with time and
rises abruptly when the target maneuvers. The
trajectory of the target can be estimated with
acceptable error for underwater weapon gui-
dance （usually several hundred meters for tar-
get positioning）. UKF is more accurate than
EKF， and shows good robustness for conver-
gence.

Fig.1 The trajectories of the observer and target
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非线性 Kalman 滤波器在纯方位被动跟踪中的应用

钟志通 1，2， 杨秀庭 2， 余家祥 2， 朱 慧 2

（1. 西北工业大学航海学院， 西安 710072； 2. 海军大连舰艇学院， 辽宁大连 116018）

摘要： 目标运动分析（简称 TMA）是用于估计水下目标时变状态最主要的技术之一。 应用了两种非线性滤波器———

EKF和 UKF 来估计单/双基地情况下的目标运动状态，并由蒙特-卡洛仿真给出其跟踪性能。 数值结果表明：在大部分情况

下，特别是当目标存在机动时，UKF 在估计精度和数值稳定性上都要好于 EKF，其代价仅是少量地增加了的计算复杂度。
关键词： TMA;被动跟踪;UKF
中图分类号： TB556 文献标识码： A 文章编号： 1000-3630（2008）-06-0911-05
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The results of bistatic estimation are
shown in Fig.3. Compared with those of Fig.2，
the estimation is better for increased observer
numbers. Furthermore， the curves in Fig.3 are
much rougher than those in Fig.2 due to the
increasing number of divergence in solving
UKF and EKF equations.

In both two scenarios， UKF acquires better
accuracy of state estimation， and is more ro-

bust to avoid numerical divergence， with the
cost of small increase in computational comp-
lexity （about twice of EKF）.

5 CONCLUSIONS

In this paper， two types of nonlinear fil-
ters have been applied to the BOT problems
in the monostatic and bistatic scenarios. The
performance of these two estimators is
evaluated by the Monte-Carlo simulations. The
results show that algorithm of UKF outper-
forms the EKF in terms of accuracy and st-
ability. With slightly increasing in computa-
tional cost， the UKF deserves to be a pro-
mising and valuable tool in the underwater
TMA issues.
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Fig.3 Square root of the estimated positions of the target
in the bistatic scenario: （a） position x; （b） position y.
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