文章编号:1001-0920(2016)10-1853-07

DOI: 10.13195/j.kzyjc.2015.1290

带有引力搜索算子的烟花算法

朱启兵, 王震宇, 黄 敏

(江南大学 轻工过程先进控制教育部重点实验室, 江苏 无锡 214122)

摘 要: 针对烟花算法(FA)寻优过程中粒子间信息交流少、对最优点位置不在原点和原点附近的目标函数求解能力差的缺点,提出带有引力搜索算子的烟花算法(FAGSO). 算子利用粒子间相互引力作用对粒子维度信息进行改善,以提高算法的优化性能. 6个标准和增加位置偏移测试函数的仿真结果表明, FAGSO 相比于 FA、粒子群算法和引力搜索算法,在寻优速度和寻优精度方面有更好的优化性能.

关键词:烟花算法;引力搜索;偏移函数;函数优化;全局寻优中图分类号: TP301文献标志码: A

Fireworks algorithm with gravitational search operator

ZHU Qi-bing, WANG Zhen-yu, HUANG Min

(Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education, Jiangnan University, Wuxi 214122, China. Correspondent: ZHU Qi-bing, E-mail: zhuqib@163.com)

Abstract: For the problems that the individuals including fireworks and sparks are not well-informed in the process of searching optimum, and the algorithm yields a poor result when being applied on shifted functions whose optimum are not at the origin or near the origin, a hybrid fireworks algorithm with the gravitational search operator(FAGSO) is proposed. The operator improves the particles dimension information through the gravity between individuals. Simulation experiments are conducted on 6 standard and shifted benchmark functions. Results show that the hybrid algorithm displays better performance compared to the fireworks algorithm(FA), the particle swarm optimization(PSO) algorithm and the gravitational search algorithm(GSA).

Keywords: fireworks algorithm; gravitational search; shifted function; function optimization; global optimization

0 引 言

元启发式算法一直是优化算法研究领域中的一 个热点,它们在解决复杂的最优化问题上体现了良好 的高效性和稳定性.特别是基于群体智能的元启发式 算法,如粒子群算法^[1]、人工蜂群算法^[2]、蚁群算法^[3]. 此类算法利用群体粒子间信息和粒子与环境间信息, 在搜索域内寻找全局最优解以解决复杂困难的优化 问题,已广泛应用于各个工程应用领域.

通过模拟烟花爆炸中炸点扩散机制, Tan 等^[4]提 出了一种新颖的寻优搜索算法——烟花算法(FA). Bureerat 等^[5]通过对标准函数的检测实验, 比较了12 种不同优化算法的优化性能, 其中烟花算法表现良好, 优化结果明显好于粒子群算法和遗传算法. 研究学者 对烟花算法进行了改进研究. Gao 等^[6]提出了一种文 化烟花算法, 通过提取烟花粒子的有利信息引导搜 索; Zheng 等^[7]提出了一种带有差分进化算子的混合 烟花算法,通过变异、交叉过程增加粒子多样性; 曹炬 等^[8]结合遗传算法思想, 提出了带有遗传算子的烟花 算法. 现有对烟火算法的改进研究主要是针对最优点 位置在原点或原点附近位置的检测函数进行的,此时 烟花算法展现了良好的优化性能, 但当把最优点位置 不在原点或原点附近位置的函数作为检测函数时, 烟 花算法的求解结果会变得很差^[9], 这大大影响了烟花 算法的实际应用范围.

为了克服上述烟花算法中存在的问题,本文结合 引力搜索算法思想提出一种新的解决优化问题方法, 即带有引力搜索算子的烟花算法(FAGSO).在标准的 烟花算法中加入引力搜索算子,通过粒子间相互引力 作用与优越粒子集合进行信息交互,产生新的火花粒 子,增加火花粒子的多样性,提高算法的搜索精度和

收稿日期: 2015-10-20; 修回日期: 2016-03-08.

基金项目:国家自然科学基金项目(61271384,61275155);中央高校基本科研业务费专项基金项目(JUSRP51510).

作者简介:朱启兵(1973-),男,教授,博士,从事农业信息感知与处理、智能优化算法等研究;王震宇(1992-),男,硕士生,从事智能优化算法的研究.

收敛速度,削弱标准烟花算法映射规则和高斯变异算 子带来的不良影响.通过对标准测试集函数和增加位 置偏移函数的实验,验证了所提出算法的有效性.

1 烟花算法

烟花算法是一种模拟烟花爆炸过程的全局优化 算法,烟花爆炸的过程可以看作粒子在自己领域内搜 索解的过程.烟花算法的工作过程与一般群体智能 优化算法相似,首先随机产生 N 个烟花作为初始化群 体,然后让群体中的每个烟花经历爆炸和高斯变异过 程产生新的火花粒子,并应用设定的映射规则保证新 的火花粒子仍处于可行域内,最后在保留最优个体的 前提下,按基于距离的选择策略从生成的所有个体中 选择出余下的 N – 1 个个体,共同组成下一代初始烟 花.这样周而复始,逐一迭代下去,直到满足精度要求 或达到设定的最大迭代次数.

1.1 烟花算法实现过程

设 $X(t) = [x_1, x_2, \dots, x_i, \dots, x_N]$ 为第 t 次迭代 的初始烟花集合.其中: N 为烟花个数; $x_i \in R^D$ 为第 i 个烟花在解空间中的位置信息,其适应度值为 $f(x_i)$. 对每一个烟花粒子 x_i 进行爆炸操作,产生个数 为 s_i 的火花粒子集合 $Y_i(t) = [y_{i,1}, \dots, y_{i,j}, \dots, y_{i,s_i}],$ $y_{i,j} \in R^D$ 与 x_i 的维数相同,火花粒子 $y_{i,j}$ 的生成过程 可由下式表述:

$$y_{i,j} = x_i + A_i B \operatorname{rand}(-1, 1),$$

$$1 \le i \le N, 1 \le i \le s_i.$$
(1)

其中: B为一个1×D维的随机矩阵,矩阵元素的取值 为0或1; A_i为烟花粒子x_i的爆炸幅度,计算公式为

$$A_{i} = \hat{A} \frac{f(x_{i}) - \min_{1 \le k \le N} f(x_{k}) + \varepsilon}{\sum_{k=1}^{N} (f(x_{i}) - \min_{1 \le k \le N} f(x_{k})) + \varepsilon}, \qquad (2)$$

 \hat{A} 为一个常数以限制最大爆炸幅度, ε 为一个极小的 常数,以避免出现零的情况.

每个烟花
$$x_i$$
 可产生的火花个数 s_i 由下式决定:

$$\max_{\substack{1 \leq k \leq N \\ N}} f(x_k) - f(x_i) + \varepsilon$$

$$s_i = m \frac{\sum_{\substack{1 \leq k \leq N \\ N}} f(x_k) - f(x_i) + \varepsilon}{\sum_{i=1}^{N} (\max_{1 \leq k \leq N} f(x_k) - f(x_i)) + \varepsilon}, \quad (3)$$

其中*m*为常数,用来限制产生的火花总数.为避免爆 炸产生火花数量过多或过少,为每个烟花设定如下产 生火花数量的限制公式:

$$\hat{s}_{i} = \begin{cases} \operatorname{round}(am), \ s_{i} < am;\\ \operatorname{round}(bm), \ s_{i} > bm, \ a < b < 1;\\ \operatorname{round}(s_{i}), \ \text{otherwise.} \end{cases}$$
(4)

其中: \hat{s}_i 为第i个烟花最终可产生的火花数量, round()为四舍五入取整函数,a和b为给定的常数. 为进一步提高火花种群多样性,烟花算法在求 解过程中引入高斯变异过程,从X(t)集合中随机选 择p个烟花(0 < $p \le N$),对其按照式(5)进行高斯变 异操作,产生高斯变异火花粒子集合

$$Z(t) = [z_1, z_2, \cdots, z_h, \cdots, z_p],$$

有

$$z_h = x_h Bg, \ 1 \leqslant h \leqslant p. \tag{5}$$

其中: *x_h* 为从 *X*(*t*) 中随机选择的烟花; *B* 为一个1 × *D* 维的随机矩阵, 矩阵元素的取值为0或1; *g* 为服从 均值为1、方差为1 高斯分布的随机数.

为防止新产生的两种火花粒子超出搜索范围,烟 花算法采用模运算的映射规则,将超出可行域范围外 的火花拉回到可行域范围内.如当火花粒子 y_{i,j}超出 可行域范围时,按下式计算:

 $y_{i,j}^{d} = y_{\min}^{d} + |y_{i,j}^{d}|\%(y_{\max}^{d} - y_{\min}^{d}).$ (6) 其中: $y_{i,j}^{d}$ 为火花粒子 $y_{i,j}$ 在第 d 维上的位置, y_{\max}^{d} 和 y_{\min}^{d} 分别为第 d 维的上下搜索边界, % 为模运算.

每一次迭代过程的最后,烟花算法从集合W(t) = { $X(t) \bigcup Y(t) \bigcup Z(t)$ } 中选择 $N \land h$ 粒子作为下一次 迭代的初始烟花. 粒子群中最优个体会被保留下来, 其他 $N - 1 \land h$ 烟花采用轮盘赌方式进行随机选择. 个 体 $w_i \in W(t)$ 被选择概率基于粒子间距离进行计算, 其计算公式为

$$L(w_i) = \sum_{j=1}^{W(t)} \| w_i - w_j \|,$$
(7)

$$P(w_i) = \frac{L(w_i)}{\sum_{j \in W(t)} L(w_j)}.$$
(8)

其中: *L*(*w_i*) 为个体*w_i*与其他个体的距离之和,采用 欧氏距离度量; *P*(*w_i*) 为个体*w_i* 被选择概率. 烟花算 法流程如图 1 所示.

1.2 烟花算法分析

由式(1)~(3)可知,对于适应度值好的烟花会在 较小爆炸区域内产生更多的火花以加快收敛过程,适 应度值差的烟花会在较大爆炸区域内产生较少火花 以增加搜索粒子的多样性. 但是, 这种粒子产生机制 没有利用粒子群中其他优秀粒子的位置信息和整个 群体信息,粒子之间交流较少,不能充分保证粒子的 多样性且不够灵活.同时研究发现,烟花算法对于最 优点位置处于原点或原点附近位置的测试函数有着 十分明显的性能优势,但当烟花算法应用到具有偏移 的测试函数上进行求解,即测试函数的最优位置不处 于原点或其附近时,标准烟花算法的求解结果会变的 很差[9]. 这主要由两个原因造成: 在烟花算法中, 对于 超出边界的解,映射规则很容易将其映射到搜索空间 中间原点附近的位置,如果测试函数的全局最优点在 原点位置,且搜索空间的上下边界对称,则这种映射 规则会使超出边界的点被人为设定到原点位置附近, 无意中加速了算法的收敛性;如果一个解的位置已经 十分接近原点位置,则高斯变异算子很容易将解变异 到原点位置附近,使得该解很难跳出原点位置附近的 区域.

2 带有引力搜索算子的烟花算法

对于一个D维优化问题而言,求得优化解的好 坏与每一维上的优化结果相关.在搜索最优解的过程 中,较差适应度值的解很可能是因为在某些维度上 没有取得最优的优化结果^[10].目前所研究的群体智 能算法,如差分进化算法、粒子群算法、引力搜索算 法^[11],都强调在求解最优化问题时充分利用粒子群的 有利信息,生成新粒子或更新原有粒子.万有引力搜 索算法的求解过程是通过粒子间万有引力的作用,使 得粒子朝着质量最大的粒子移动,质量最大的粒子占 据最优位置,从而在移动的过程中得到优化问题的最 优解^[12-13].结合以上思想和万有引力搜索算法的求解 过程,本文设计了引力搜索算子,将算子功能加入到 烟花算法求解优化问题过程中.

2.1 引力搜索算子

引力搜索算子的运算过程是通过粒子间相互引 力作用对粒子进行位移操作,进而改变粒子的维度信 息,其运动过程遵循动力学规律.在此过程中,粒子之 间实现了优化信息的共享,处于求解空间中的粒子能 感应到全局环境信息并改善较差维度值,引导粒子群 体向最优解区域搜索.算子具体操作过程如下:

设集合 $W(t) = \{X(t) \bigcup Y(t) \bigcup Z(t)\}$ 为t时刻, N个烟花经爆炸、高斯变异后所得到的全部粒子集合,粒子的总数为 N_a ,并设集合中的第i个粒子为

$$w_i \in R^D$$
,其惯性质量 M_i 可计算为
 $f(w_i) - \max_{w_i \in W(t)} f(w_j)$

$$m_{i} = \frac{w_{j} \in W(t)}{\min_{w_{j} \in W(t)} f(w_{j}) - \max_{w_{j} \in W(t)} f(w_{j})}, \qquad (9)$$

$$M_i = \frac{m_i}{\sum_{w_j \in W(t)} m_j}.$$
(10)

由式(9)和(10)可以推导出,对于单个粒子而言, 其适应度值越低质量越大,既位置较优的粒子有更 大的惯性质量.算子从总数为*N*_a的粒子中选取质量 最好(适应度小)的前2×*N*个粒子组成优越粒子集 合*R*,以集合*R*作为算子中的吸引单元,对粒子集合 *W*(*t*)施加引力作用,其引力为

$$F_i^d = \sum_{j \in R, j \neq i} \operatorname{rand}(0, 1) F_{i,j}^d, \tag{11}$$

$$F_{i,j}^d = G \frac{M_i \times M_j}{r_{ij} + \varepsilon} (w_j^d - w_i^d).$$
(12)

其中: w_i^d 、 w_j^d 为集合W(t)中第i、j粒子在第 $d(d \leq D)$ 维上的坐标; F_i^d 为粒子i在第d维空间所受力总和; G为引力常数, 其大小控制位置改变量的精度; M_i 为粒子的惯性质量; r_{ij} 为粒子i与粒子j之间的欧氏距离; ε 为一个极小常数, 防止分母为零.

在引力 F^d_i 的作用下, 粒子 w_i 在每一维上产生移动, 设移动后的粒子空间位置为 v_i, 其位置为

$$v_i^d = x_i^d + F_i^d / M_i. (13)$$

 $记 V(t) = [v_1, v_2, \dots, v_i, \dots, v_{Na}]$ 为更新后的 所有粒子位置,根据粒子的适应度值大小,从集合 $\{W(t) \bigcup V(t)\}$ 中选择 N 个烟花粒子作为下一次迭代 过程的初始烟花,记为 X(t+1).

2.2 FAGSO 算法优化流程

将引力搜索算子加入到标准烟花算法中构成 FAGSO算法,算法优化求解流程如下.

Step 1: 设置算法参数T、N、a、b、m、 \hat{A} 、p、G. 其中: T 为设定的迭代次数, N 为烟花粒子数目, a、b、 m 为给定的常数以确定可生成火花粒子数目的最大 最小值, \hat{A} 为限制烟花粒子爆炸幅度的常数, p 为要进 行高斯变异的烟花个数, G 为引力常数.

Step 2: 在n维搜索空间内随机初始化N个烟花 粒子的位置, 令t = 1.

Step 3: 采用式(2)~(4) 计算当次迭代过程中,每 个烟花产生的火花个数和爆炸幅度,由式(1)对每个 烟花执行爆炸操作,产生普通火花粒子,由式(5) 对一 定数量的烟花粒子进行高斯变异,产生高斯变异火花 粒子.

Step 4: 对超出范围的火花粒子按式(6)规则映射 到可行域范围内.

Step 5: 由式(9)和(10)计算搜索空间中每个粒子 的惯性质量,并从中提取质量好的2×N个粒子组成 优越粒子集合 R.

Step 6: 计算集合 R 中优越粒子与其他每一个粒 子的欧氏距离,并由式(11)和(12)得到每个粒子每一 维度受集合 R 的引力大小. 按式(13)产生新的火花粒 子,对超出范围的火花粒子按式(6)规则映射到可行 域范围内.将所有烟花和火花粒子按照适应度值大小 排列,从中选择出前 N 个粒子作为下一次迭代的初始 烟花, 置t = t + 1.

Step 7: 若 *t* < *T*,则返回 Step 3, 否则算法停止, 输 出目标函数的优化结果.

引入引力搜索算子后,以适应度值好的2×N个 火花粒子作为引力单元,使位置较差的火花粒子有机 会与优越粒子在每一维度上进行信息交互,产生位置 信息改进后的火花粒子,增加粒子的多样性以防止陷 入局部最优,更加有利于寻找到全局最优点.对于增 加位置偏移的测试函数,即最优点位置不在原点及原 点附近的测试函数,引力搜索算子的加入可削弱映射 规则和高斯变异过程对优化过程所带来的不良影响.

3 实验分析

3.1 实验设计

为检验所提出算法的寻优精度、收敛速度等求 解性能,选用一组包含单峰和多峰的标准测试函数 进行实验,比较FAGSO算法与FA算法、粒子群算法 (PSO)、引力搜索算法(GSA)的优化性能.其中: $f_1 \sim$ f3为单峰函数,可以测试算法的寻优精度,考察算法 的执行性能; $f_4 \sim f_6$ 为多峰函数, 局部最优点的数 目会伴随着维数的增加呈指数增长,用来检验算法 跳出局部最优的能力.表1给出6个检测函数的表达 式、搜索范围、最优点位置、理论最优值和搜索维度.

▲ 1 // 风田数									
函数名称	表达式	搜索范围	最优点	最优值	搜索维度				
Sphere	$f_1(x) = \sum_{i=1}^D x_i^2$	[-100, 100]	$[0,0,\cdots,0]$	0	30				
Schwefel's 2.22	$f_2(x)=\sum_{i=1}^D x_i +\prod_{i=1}^D x_i$	[-10, 10]	$[0,0,\cdots,0]$	0	30				
Rosenbrock	$f_3(x) = \sum_{i=1}^{D-1} (100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2)$	[-30, 30]	$[0,0,\cdots,0]$	0	30				
Ackley	$f_4(x) = -20\exp\left(-0.2\sqrt{\frac{1}{D}\sum_{i=1}^{D}x_i^2}\right) - \exp\left(\frac{1}{D}\sum_{i=1}^{D}\cos(2\pi x_i)\right) + 20 + e$	[-32, 32]	$[0,0,\cdots,0]$	0	30				
Griewank	$f_5(x) = 1 + \sum_{i=1}^{D} \frac{x_i^2}{4000} - \prod_{i=1}^{D} \cos\left(\frac{x_i}{\sqrt{i}}\right)$	[-600, 600]	$[0,0,\cdots,0]$	0	30				
Rastrigin	$f_6(x) = \sum_{i=1}^{D} (x_i^2 - 10\cos(2\pi x_i) + 10)$	[-5.12, 5.12]	$[0,0,\cdots,0]$	0	30				

表 2 偏移指数与偏移量

SI	1	2	3	4	5	6
SV	$0.05 \times \frac{U_k - L_k}{2}$	$0.1 \times \frac{U_k - L_k}{2}$	$0.2 \times \frac{U_k - L_k}{2}$	$0.3 \times \frac{U_k - L_k}{2}$	$0.5 \times \frac{U_k - L_k}{2}$	$0.7 \times \frac{U_k - L_k}{2}$

对于每一个测试函数,烟花种群初始化范围为 $[U_k/2, U_k], U_k$ 表示第k维的搜索范围上界. 实验用 Matlab实现, FA 算法和 FAGSO 算法参数设定如下: 初始烟花数目 N = 5,发生高斯变异烟花数目 p = 5, m = 50, a = 0.04, b = 0.8, 最大爆炸幅度 $\hat{A} = 40, 引$ 力搜索算子中设置 $G = G_0 \times e^{-\alpha}, G_0 = 100, \alpha = 20,$ 此时对维度信息的改变量精度最高[11]. PSO 算法和 GSA 算法参数的设定参考文献 [14, 11]. 实验设定每 选择出一代初始烟花为一次迭代过程,首先对标准被 测函数进行实验,设置迭代次数为1000,每个函数独 立运行20次.

为检验FAGSO算法对偏移函数的优化能力,对 增加位置偏移量测试函数进行实验,引用文献[9]中 6种偏移指数和偏移量分析改进后的优化算法在不 同偏移量下的优化性能. 位置偏移大小与优化问题 的搜索范围相关,如表2所示. Uk、Lk分别为优化函 数的搜索范围上下界, SI为偏移指数, SV为偏移量. 当偏移指数为0时, 被测函数未发生偏移; 当偏移指 数不为0时, 粒子求适应度时将对应偏移量增加到 粒子xi的每一维位置信息上,从而使被测函数的最 优点位置远离搜索区域原点处. 例如, 对于 f_1 -Sphere 函数,当偏移指数为6时,每一维上的改变量为0.7× ((100 - (-100))/2) = 70, 最优点的位置偏移原点 处70, 搜索范围不发生改变. 偏移函数实验两种算法 的参数设置与上相同, 设置迭代次数为3000, 每个函 数独立运行20次.

3.2 实验结果和分析

3.2.1 标准函数实验结果和分析

表3为6种函数在无位置偏移情况下,20次独立 运行获得的最优值和统计平均.为了便于比较,同时 列出了有关文献中PSO^[14]、GSA^[11]对这6种函数的 优化结果.由表3可见,无论对于单峰函数还是多峰 函数, FAGSO、FA的整体性能都要优于PSO和GSA, 且FAGSO的性能表现更加优异.对于单峰函数 f_1 , FAGSO在设定的迭代次数内求解得到了全局最优解. 对于 f_2 和 f_3 , FAGSO 也有最好的寻优精度. FA 虽然 得到了相比PSO、GSA更好的结果,但其收敛速度 要比FAGSO慢,收敛曲线比较如图2(a)所示.对于多 峰函数 f_4 、 f_5 、 f_6 , FAGSO与FA在设定的迭代次数 内得到了相同解,且对于f5和f6都找到了全局最优 解,但FAGSO有更快的收敛速度,收敛曲线比较如 图 2(b) 所示. 以上结果表明, 引力搜索算子能有效地 增加优秀粒子与其他较差粒子间的信息交互,对较差 粒子的位置信息进行改善,在算法优化求解过程中起 到了推动作用,使算法有更快的收敛速度,有利于求 解到精度更好的最优解.同时,算子增加了粒子的多 样性,对于局部空间内有多个极小值点的优化问题有 更好的求解性能.

表 3 FAGSO与其他算法的比较

函数		FAGSO	FA	PSO	GSA				
f_1	best	0 2.38e-22		4.39	7.1e-11				
	mean	0	1.96e-163	42.37	2.10e-10				
	best	2.88e-215	8.67e-118	2.03	4.03e-5				
f_2	mean	8.44e-192	3.47e-93	19.95	6.9e-5				
	best	3.1e-3	0.67	1.47e+2	25.16				
fз	mean	16.96	19.90	2.81e+3	25.16				
<i>c</i>	best	8.88e-16	8.88e-16	5.29	6.9e-6				
f_4	mean	8.88e-16	8.88e-16	10.13	1.1e-5				
c	best	0	0	1.03	0.04				
f_5	mean	0	0	1.55	0.29				
	best	0	0	39.50	14.42				
f_6	mean	0	0	84.85	15.32				

3.2.2 偏移函数实验结果和分析

表4为不同偏移量情况下, FAGSO和FA的实验 结果.由表4可见,随着偏移量的增加, FAGSO和FA 的寻优精度在整体上都有所下降,且FA的下降幅度 尤为明显,其原因在于,随着偏移量的增加,FA中高 斯变异和映射规则已不再起关键作用.在不同偏移量 下, FAGSO相比于FA在寻优精度上有很大提升,且 FAGSO的标准差要远小于FA,这表明FAGSO相比 FA更加稳定.

表 4 不同偏移指数下实验结果													
		f_1 -Sphere		f_2 -Sch	wefel's	f ₃ -Rosenbrock		f ₄ -Ackley		f5-Griewank		f ₆ -Rastrigin	
		FA	FAGSO	FA	FAGSO	FA	FAGSO	FA	FAGSO	FA	FAGSO	FA	FAGSO
CI 1	平均值	6.26e-1	2.78e-9	5.28e-1	4.59e-2	3.99	7.30e-3	5.21e-1	7.33e-4	2.24e-1	1.68e-2	6.01	1.48
SI = 1	标准差	2.21e-1	1.29e-9	1.97e-1	1.85e-2	1.61	1.25e-2	4.46e-1	2.56e-4	7.87e-2	2.50e-2	3.92	1.25
	平均值	1.60	3.62e-9	9.99e-1	5.98e-2	121.48	13.14	1.15	1.73e-3	4.30e-1	1.60e-2	10.36	2.39
SI = 2	标准差	4.86e-1	2.41e-9	3.03e-1	2.12e-2	50.13	20.35	4.73e-1	2.60e-2	1.08e-1	2.10e-2	4.45	2.16
	平均值	3.39	3.35e-9	1.61	8.21e-2	254.88	29.88	2.02	2.35e-2	6.29e-1	7.51e-3	4.62	1.43
SI = 3	标准差	8.33e-1	2.41e-9	4.97e-1	2.96e-2	104.56	25.77	3.54e-1	9.87e-2	1.10e-1	7.20e-3	2.28	1.20
	平均值	7.23	3.02e-9	2.22	1.04e-1	409.52	94.83	2.28	7.47e-2	6.77e-1	1.45e-2	13.07	2.28
SI = 4	标准差	2.79	9.42e-9	5.51e-1	4.11e-2	180.43	297.67	4.82e-1	1.95e-1	1.22e-1	1.27e-2	3.85	1.53
	平均值	9.69	2.95e-9	2.77	1.02e-1	808.29	88.97	2.73	8.84e-2	8.24e-1	1.28e-2	15.07	2.27
SI = 5	标准差	3.45	1.32e-9	6.17e-1	3.16e-2	490.93	122.97	3.52e-1	2.49e-1	1.19e-2	1.84e-2	3.10	1.20
	平均值	11.57	3.40e-9	3.12	9.93e-2	1638.89	180.26	3.19	7.40e-2	8.80e-1	1.32e-2	15.58	2.13
SI = 6	标准差	5.80	1.53e-9	7.20e-1	4.15e-2	900.78	280.94	5.03e-1	1.84e-1	9.71e-2	1.38e-2	3.69	9.46e-1
fitness		-5 1 i	0 15 terations	$\frac{1}{20} = \frac{1}{20}$	A SI=1 A SI=2 A SI=3 A SI=4 A SI=5 A SI=6 5 30			fitness		10 iterat	15 20 tions/10 ²	FA S FA S FA S FA S FA S FA S FA S	$\begin{bmatrix} 1 = 1 \\ 1 = 2 \\ 1 = 3 \\ 1 = 4 \\ 1 = 5 \\ 1 = 6 \\ 3 \end{bmatrix}$
fitness	160 80 0 0	$5 1$ i (a) f_1	0 15 terations -Sphere 4	F 	$ \begin{array}{c} A & SI = 1 \\ A & SI = 2 \\ A & SI = 3 \\ A & SI = 4 \\ A & SI = 5 \\ A & SI = 6 \\ \hline \\ 5 & 30 \end{array} $			fitness	6 8 0 0 5 (a	10 iterat) <i>f</i> ₄ -Ack	—————————————————————————————————————	AGSO SI AGSO SI AGSO SI AGSO SI AGSO SI AGSO SI AGSO SI 25 曲线	
fitness		5 1 i	0 15 terations	$\frac{1}{20} = \frac{F}{20}$	$\begin{array}{c} \text{A SI=1}\\ \text{A SI=2}\\ \text{A SI=3}\\ \text{A SI=4}\\ \text{A SI=5}\\ \text{A SI=6}\\ A $			fitness		10 iterat	15 20 tions/10 ²	FA SI FA SI * FA SI * FA SI * FA SI * FA SI	
fitness	$\begin{array}{c} 20\\ 10\\ 0\\ 0\\ 0 \end{array}$	5 1 i	0 15 terations	$ \begin{array}{c} \hline F \\ \hline 0 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$	$ \begin{array}{c} A & SI = 1 \\ A & SI = 2 \\ A & SI = 3 \\ A & SI = 4 \\ A & SI = 5 \\ A & SI = 6 \end{array} $			fitness		10 iterat		AGSO SI= AGSO SI= AGSO SI= AGSO SI= AGSO SI= AGSO SI= 25	=1 =2 =3 =4 =5 =6 30
		(b) f_2 -S	Schwefel	收敛曲约	戋				(b)	f ₅ -Grie	nank收敛	女曲线	
$fitness/10^3$		5 1 i	0 15 terations	$\frac{1}{20} = \frac{1}{2}$	A SI=1 A SI=2 A SI=3 A SI=4 A SI=5 A SI=6 5 30			10 fitness	$0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 5 $	10 iterat	15 20 tions/10 ²	FA Si FA Si FA Si FA Si FA Si FA Si FA Si FA Si	$\begin{bmatrix} 1 \\ 1 \\ -2 \\ -3 \\ -4 \\ -5 \\ -6 \\ \hline $
fitness/10 ³		5 1	0 15	F F F F F F F F F 	$ \begin{array}{c} A SI=1 \\ A SI=2 \\ A SI=3 \\ A SI=4 \\ A SI=5 \\ A SI=6 \end{array} $			gituess 10	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 5 \end{array}$	10	15 20	FAGSO SI FAGSO SI FAGSO SI FAGSO SI FAGSO SI FAGSO SI FAGSO SI	=1 =2 =3 =4 =5 =6 30
		i	terations	/10 ⁻	1 <i>4</i> 4					iterat	tions/ 10^2		
		(c) f_3 -R	osenbroc	ĸ収敛⊞	线				(c)	f_6 -Rastr	1gin 收敛	田线	
图 3 单峰偏移函数收敛曲线									图4 多	峰偏移	函数收敛	曲线	

图3和图4为不同偏移量下,利用FA和FAGSO 优化 *f*₁、*f*₂、*f*₃ 单峰函数和*f*₄、*f*₅、*f*₆ 多峰函数的收 敛曲线.由曲线可见,随着偏移量的增加,FA的收敛 性能急剧下降,在设定的迭代次数(3000次)内,难以 收敛到最优值,FAGSO的收敛速度明显优于FA.这表 明,FAGSO防止陷入局部最优的能力相比于FA有所 加强,更加有利于解决高维复杂的优化问题.

4 结 论

针对烟花算法求解过程中的弊端,本文结合引力 搜索算法思想提出了一种带有引力搜索算子的烟花 算法.该算法在优化求解过程中利用优越火花粒子的 位置信息,对其他粒子位置信息进行改善,增强粒子 群间的信息交流,削弱了烟花算法中映射规则和高斯 变异过程对求解过程带来的不良影响,提高了算法的 优化性能.从对6个标准测试函数和偏移函数的实验 结果看,所提出算法不仅能得到较好的优化结果,而 且具有较高的收敛速度.

从研究结果可以发现,尽管本文提出的算法可以 改善偏移条件下的寻优精度,但是其在迭代后期的收 敛速度仍有进一步提高的空间.如何吸收其他群智能 算法的优点,提高其在偏移条件下迭代后期的收敛速 度将是下一步需要解决的问题.

参考文献(References)

- Kennedy J, Ebethart R. Particle swarm optimization[J]. Swarm Intelligence, 2007, 1(1): 33-57.
- [2] Karaboga D, Bastuk B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony(ABC) algorithm[J]. J of Global Optimization, 2007, 39(3): 459-471.
- [3] Dorigo M, Maniezzo V. Ant system: Optimization by a colony of cooperating agents[J]. Systems, Man, and Cybernetics, 1996, 26(1): 29-41.
- [4] Tan Y, Zhu Y. Fireworks algorithm for optimization[J]. Lecture Notes in Computer Science, 2010: 21(7): 355-364.
- [5] Bureerat S. Hybrid population-based incremental learning using real codes[C]. Learning and Intelligent Optimization.

Rome: Spinger-Verlag, 2011: 379-391.

- [6] Gao H, Diao M. Cultural firework algorithm and its application for digital filters design[J]. Int J of Modelling, Identification and Control, 2011, 14(4): 324-331.
- [7] Zhen Y J, Xu X L, Ling H F, et al. A Hybrid fireworks optimization method with differential evolution operators[J]. Neurocomputing, 2015, 148(148): 75-82.
- [8] 曹炬,李婷婷,贾红.带有遗传算子的烟花爆炸优化算法[J].计算机工程, 2010, 36(23): 149-151.
 (Cao J, Li T T, Jia H. Fireworks explosion optimization algorithm with genetic operators[J]. Computer Engineering, 2010, 36(23): 149-151.)
- [9] Zheng S, Janecek A, Tan Y. Enhanced fireworks algorithm[C]. Evolutionary Computation. Cancun: IEEE, 2013: 2069-2077.
- [10] Liang J, Qin A, Suganthan P, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Trans on Evolutionary Computation, 2006, 10(3): 281-295.
- [11] Rashedi E, Nezamabadi H, Saryazdi S. GSA: A gravitational search algorithm[J]. Information Science, 2009, 179(13): 2232-2248.
- [12] Li C, Zhou J. Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm[J]. Energy Conversion and Management, 2011, 52(1): 374-381.
- [13] 徐遥, 王士同. 引力搜索算法的改进[J]. 计算机工程与应用, 2011, 47(35): 188-192.
 (Xu Y, Wang S T. Enhanced version of gravitational search algorithm: weighted GSA[J]. Computer Engineering and Applications, 2011, 47(35): 188-192.)
- [14] Zhao X. A perturbed particle swarm algorithm for numerical optimization[J]. Applied Soft Computing, 2010, 10(1): 119-124.

(责任编辑:郑晓蕾)