
 Vol.14, No.12 ©2003 Journal of Software 软 件 学 报 1000-9825/2003/14(12)1996

具有高可理解性的二分决策树生成算法研究
∗

蒋艳凰 1+, 杨学军 1, 赵强利 2
1(国防科学技术大学 计算机学院,湖南 长沙 410073)
2(清华得实科技股份有限公司,北京 100085)

Constructing Binary Classification Trees with High Intelligibility

JIANG Yan-Huang1+, YANG Xue-Jun1, ZHAO Qiang-Li2

1(School of Computer, National University of Defence Technology, Changsha 410073, China)
2(Tsinghua Dascom Scie-Tech Co., Ltd, Beijing 100085, China)

+ Corresponding author: Phn: 86-731-4573681, E-mail: jiang-yh@163.com

http://www.nudt.edu.cn

Received 2002-10-29; Accepted 2002-12-31

Jiang YH, Yang XJ, Zhao QL. Constructing binary classification trees with high intelligibility. Journal of
Software, 2003,14(12):1996~2005.
http://www.jos.org.cn/1000-9825/14/1996.htm

Abstract: Binarization is the most popular discretization method in decision tree generation, while for the domain
with many continuous attributes, it always gets a big incomprehensible tree which can’t be described as knowledge.
In order to get a more intelligible decision tree, this paper presents a new discretization algorithm, RCAT, for
continuous attributes in the generation of binary classification tree. It uses simple binarization to solve the
multisplitting problem through mapping a continuous attribute into another probability attribute based on statistic
information. Two pruning methods are introduced to simplify the constructed tree. Empirical results of several
domains show that, for the two-class problem with a preponderance of continuous attributes, RCAT algorithm can
generate a much smaller decision tree efficiently with higher intelligibility than binarization while retaining
predictive accuracy.
Key words: machine learning; binary classification tree; information gain; pruning; range-splitting based on

continuous attributes transform (RCAT) algorithm

摘 要: 二分离散化是决策树生成中处理连续属性最常用的方法,对于连续属性较多的问题,生成的决策树庞

大,知识表示难以理解.针对两类分类问题,提出一种基于属性变换的多区间离散化方法——RCAT,该方法首先

将连续属性转化为某类别的概率属性,此概率属性的二分法结果对应于原连续属性的多区间划分,然后对这些

∗ Supported by the National Natural Science Foundation of China under Grant No.69825104 (国家自然科学基金)
JIANG Yan-Huang was born in 1976. She is a Ph.D. candidate at the School of Computer, National University of Defence

Technology. Her research interests are machine learning, artificial intelligence and image processing. YANG Xue-Jun was born in 1963.
He is a professor and doctoral supervisor of the School of Computer, National University of Defence Technology. His current research
areas include computer architecture, parallel compilation. ZHAO Qiang-Li was born in 1973. He is a senior engineer of Tsinghua
Dascom Scie-Tech Co., LTD. His interested areas include artificial intelligence and information security.

 蒋艳凰 等:具有高可理解性的二分决策树生成算法研究 1997

区间的边缘进行优化,获得原连续属性的信息熵增益,最后采用悲观剪枝与无损合并剪枝技术对 RCAT 决策树

进行简化.对多个领域的数据集进行实验,结果表明:对比二分离散化,RCAT 算法的执行效率高,生成的决策树在

保持分类精度的同时,树的规模小,可理解性强.
关键词: 机器学习;二分决策树;信息熵增益;剪枝;RCAT 算法
中图法分类号: TP18 文献标识码: A

1 Introduction

Nowadays, many fields need to get useful and understandable knowledge from amount of data, so under the
satisfaction of predictive accuracy, intelligibility becomes more and more important for a learning algorithm[1,2].
There are three strategies used to get comprehensible knowledge from pre-classified cases. The first strategy is
converting the classifier that has blackbox problem into another understandable one; Setiono and Liu[3] extract rules
from neural networks by pruning and hidden-unit splitting. Boz[4] provides a DecText system to extract a decision
tree from a trained neural network. The second strategy is the simplification of big decision trees or rule sets into
simple ones; Windeatt and Ardeshir[5] analyze the relationship between recognition accuracy and intelligibility, and
use several pruning methods to simplify classifiers. These two strategies will reduce the classifying accuracy when
improving on intelligibility, and therefore how to get a good trade-off between these two facets is very
important[6,7]. The third one is the development of new algorithms to construct understandable classifiers; Auer[8]

uses a searching method with high complexity to find an optimal two layer decision tree. Langley[9] uses a tabular
format as the representation of knowledge, which is easy to be understood.

Decision tree is an empirical learning method which can get knowledge from a set of pre-classified cases,
where continuous attributes need to be discretized at first. Binarization[10] is the most popular discretization method
in decision tree generation, in which the value range is discretized into only two intervals according to certain
threshold. If a continuous attribute is selected as an expanding attribute for an interior node, it will split this node
into only two branches. This leads to the fact that one continuous attribute may be selected many times in one path
from the root to a leaf, and results in a big incomprehensible tree with many nodes in the end[8].

In this paper, we explore a discretization method, RCAT, for continuous attributes and apply it to construct
understandable decision trees for two-class problems, which belongs to the third strategies mentioned above. Unlike
other multi-interval discretization[11~13], RCAT uses a simple binarization to solve the multisplitting problem
through mapping a continuous attribute into a probability attribute. The binarization of the probability attribute
corresponds to a multisplitting of the original one. Experimental results show that, compared with binarization, our
method can generate much smaller decision trees with higher intelligibility while retaining predictive accuracy.

In Section 2, we give a description of the concepts used in this paper. In Section 3, we describe the RCAT
algorithm in detail. Two pruning algorithms are introduced in Section 4. Experimental results and their analysis are
shown in Section 5. Finally we give a summary of our work in Section 6.

2 Concept Description

For a decision tree, each node of the tree is associated with a set of cases. Each interior node has an expanding
attribute to split the node into some branches, and each leaf node gives a class name as the classified result. In this
paper, we let Nclass denote the number of classes, TS the total training set, T a set of cases, and |T| the cardinality of
T. Analogously, for any set, let s denote a case, A a continuous attribute, valA(s) the value of attribute A in case s,
and D a node of a decision tree.

 1998 Journal of Software 软件学报 2003,14(12)

2.1 Discretization and partition

We will get a partition for a case set according to a discretization of a continuous attribute. Suppose that
{a1,a2,…,ak−1} is the set of cutting points of attribute A in an ascending order, which discretizes the value range of

attribute A into k intervals. This discretization defines a partition for the case set T as follows: C
k

i iT
1=

{
{
{

()
()
() ki

ki
i

svala
asvala

asval

Ts
Ts
Ts

T

Ak

iAi

A

i

=
<<

=

<
≤<

≤

∈
∈
∈

=

−

−

if
1if

1if
}

}

|
|
|

1

1

1

and the partition has following properties:
① non-empty subsets: |Ti|≥1, for all i∈{1,2,…,k},

② covers the whole domain: , U TTi
k
i ==1

③ subsets are disjoint: ，for all∅=I ji TT ji ≠ , kji ≤≤ ,1 and

④ subsets are sorted: if si∈Ti, sj∈Tj, and i<j, then valA(si)<valA(sj).
From ④ we know that the cases which have identical value of attribute A will be in the same subset, and both the
case sequence in each subset and the subset sequence are sorted into an ascending order by the values of attribute A.

2.2 Evaluation functions: information gain

There are many evaluation functions used to evaluate candidate partitions, such as Gini Index, Information Gain,
Gain Ratio, Minimum Description Length Principle, and Minimum Training Set Error etc. In this paper, we use
information gain as our evaluation function. Given that some attribute divides the case set T into k subsets, the
information gain of this partition is

() (),
1

i

k

i

i TInfo
T
T

TInfogain ×−= ∑
=

thereinto Info(T) is the entropy of set T, calculated as:

() () ()
,

,
log

,
2

1

×−= ∑

= T
TCfreq

T
TCfreq

TInfo j
NClass

j

j

where freq(Cj,T) denotes the number of cases belonging to class Cj in T.

3 RCAT Algorithm

In order to construct decision trees with high intelligibility, we explore a new method-RCAT to discretize a
continuous attribute into several intervals. Unlike other multisplitting methods, RCAT uses a simple binarization to
solve the multisplitting problem through mapping a continuous attribute into another probability attribute, and the
binarization of the probability attribute has a corresponding multisplitting of the original one. In the following
sections, we will focus on the two-class problems to discuss RCAT algorithm in detail.

3.1 Interval initialization

Interval initialization is a simple discretization. In order to guarantee the reliability of statistic information, we
let the number of cases in each interval be larger than a given limit. Thus the first property of its partition should be
changed to: ① |Ti|≥LIMITS, for all i∈{1,2,…,k}. Another constraint for the initialization is the setting of an upper
limit for the number of intervals, namely k≤LIMITR. In initialization, we first sort the cases in T by their values of
attribute A, provided that the sorted case sequence is s1,s2,…,s|T|, where valA(si)≤valA(si+1), then segment the value

 蒋艳凰 等:具有高可理解性的二分决策树生成算法研究 1999

range of A into LIMITR intervals. The length of each interval is
L=(valA(s|T|)−valA(s1))/LIMITR.

We then enumerate the number of cases in each interval. If the number in an interval is less than LIMITS, combine
this interval with its next adjacent interval. For the last interval with too short of cases, we will combine it with its
previous interval.

3.2 Binarization of probability attribute

Suppose that we get k1 intervals after initialization, now let us compute the probability estimation of each class
for every interval. Because we just deal with the two-class problems, given that interval Ri is associated with case
set Ti, the frequency of the first class in Ti is freq(C1,Ti), and the probability estimations for either class in Ti is

() () () ()iiiii TCpTCpTTCfreqTCp ,1,,/,, 1211 −== .

Provided that the probability estimations of each interval for the first class are p(C1,T1),p(C1,T2),…,p(C1,Tk1)
respectively, we can map the value space of A into a probability space of C1 by using another continuous attribute P
whose values lie in [0,1] to replace the attribute A. The mapping rule is

() () ()iPiA TCpsvalRsval ,thenif 1=∈ .

Now we can use the binarization to find the best threshold for attribute P. Let an ascending ordered value sequence
of P be p1,p2,…,pk1, then every distinct value 11, kipt i ≤≤= in this sequence is a possible threshold, which splits

the whole set T into two sets: Ti with valp(s)≤t and T2 with valp(s)>t. We can get the information gain:

() ()i
i

i TInfo
T
T

TInfotPgain ∑
=

×−=
2

1
),(.

Let t=p* be the threshold with the maximum information gain, then p* is just the threshold we need.

3.3 Interval combination

We give a description of the relations between attribute A and P in Fig.1, where horizontal and vertical axes
represent the value space of attribute A and P respectively. The intervals on horizontal axis in Fig.1 are the initial
intervals of attribute A, and the fatter ones (the value range of the interval is larger than that of others in the value
space of A) indicate that they have been combined with their adjacent intervals whose number of cases are less than
LIMITS. The taller intervals indicate that the cases in their intervals belong to the first class with high frequency.
p*is the best threshold of attribute P, which separates the initial intervals into two sets; one contains the intervals
whose probability is below or equal to p* and the other set contains the remaining intervals whose probability is
over p*.

P

A

()TA sval()()1,0 svalA 1a 2a 3a 4a

*p

Fig. 1 Relations between attribute A and P
Fig.1 Relation between attributes A and P

Both sets divided by p* may have several initial intervals. We combine the adjacent intervals in the same set
since they have a similar property for attribute P. Suppose that after combination, the total number of intervals in
either of sets is k2, obviously k2≤k1. In Fig.1 we have k1=29 and k2=5. The binarization of attribute P corresponds to

 2000 Journal of Software 软件学报 2003,14(12)

the k2-splitting of attribute A, the case sets after combination can be described as follows:
() () (){ }TssvalaasvalaasvalsT AAA ∈<≤<≤= ,oror| 43211

() (){ }TsasvalaasvalasT AA ∈≤<≤<= ,or| 43212

where T1 has three combined intervals, and T2 has two.

3.4 Boundary optimization

From Fig.1, we can see that the combined intervals belong to T1 or T2 alternately. The cases whose values of the
original attribute are at the boundary of some interval should be in T1, but we put them to T2 or reverse will reduce
the information gain of the attribute. Let the k2 combined intervals associate with the case sets T1,T2,…,Tk2
respectively, and the cases in each subset are sorted by their value of attribute A, then the information gain of this
partition is

() () ()i

k

i

i TInfo
T
T

TInfoAgain ×−= ∑
=

2

1

.

Elomaa and Rousu[11] use boundary points to get an optimal k splitting of the continuous attributes, but we will
use boundary points to do optimization for RCAT. Here is the definition of the boundary points:

Definition 1. Let a sequence T of cases be sorted by the value of a continuous attribute A. The augmented set
of the boundary points is defined as follows:

1. The highest value of attribute A in the sequence T is an additional boundary point.
2. A value b∈Dom(A) is a boundary point if and only if there exists a pair of cases s1,s2∈T, having different classes,

such that valA(s1)=b<valA(s2); and there does not exist another case s∈T such that valA(s1)<valA(s)<valA(s2).
From Definition 1, we can know that every case set has at least one boundary point with respect to a

continuous attribute. The boundary points of attribute A separate the case sequence T into some case blocks. Now
we use boundary points to optimize the border of the combined interval and the definition of optimizing operator is
given as:

Definition 2. Suppose that an arbitrary discretization of the continuous attribute A gives the case set T a

partition , whose information gain is gain(A). Let the sorted case sequence of TC
k

i iT
1= i be s1,i,s2,i,…,s|Ti|,i, and that of

Ti+1 be s1,i+1,s2,i+1,…,s|Ti|,i+1, do one of the following operators:

① () (){ } () (){ }iiTAAiiiiTAAii TssvalsvalsTTTssvalsvalsT
ii

∈=∪=T ′∈=−=′ ++ ,|,,| ,11,

② () (){ } () (){ }11,11111,1 ,|,,| ++++++ ∈=−=′∈=∪=′ iiAAiiiiAAii TssvalsvalsTTTssvalsvalsTT

the other subsets are the same as before. Let the information gain after the operator be gain, if we have

gain>gain(A), then the operator is an optimizing operator for the partition , and is a partition which

can be optimized.

C
k

i iT
1= C

k

i iT
1=

Definition 3. Let OP denote an optimizing operator, executing the optimizing operator r(r≥1) times on a

partition can be described asC
k

i iT
1=

()()()CL
k

i ir TOPOPOP
112 =

, which is called one optimizing process. If we cannot

do any optimizing operator on the result of some optimizing process, then the whole process is an optimal
optimizing process for the original partition.

Theorem 1. The cutting points of an optimal optimizing process of a partition are defined on boundary points.

Proof. Let be the partition of case set T according to an arbitrary discretization of continuous C
k

i iT
1=

 蒋艳凰 等:具有高可理解性的二分决策树生成算法研究 2001

attribute A. If k=1, there are none optimizing process for the partition, the conclusion is true. Otherwise provided

that after an optimal optimizing process ()()()CL
k

i ir TOPOP
112 =

OP , the cutting points are { }121 ,...,, −hvvv

tT

, and the new

partition after this optimizing process is . Let be the cutting point between C
h

i iT
1=
′ tv ′ and , and is not

a boundary point, see Fig.2.

1+′tT tv

Fig.2 Boundary optimiz

Q Y

t

cq

w

() () () () ()()

)

(

log

1

2

1

−+

−

−

lq

lq

T

h

i iT
1=
′

()

(+

−

q

l

freq

() .

,log 21

′+

j

t jfreqT,

r

1

)

Info

()
q
q

+
+

**l l

(OP2

ation

X P R

1−tv v
1+tvu

l

∑
=

=
NClass

j
jpp

1

q = ∑
=

=
NClass

j
jrr

1

Let us define two further points from the sorted case sequence T. Point w is the lower border (a boundary
point) of the uniform block (a block contains the cases whose values of the attribute between two adjacent boundary
points) which contains vt if the border is positioned between the thresholds vt−1 and vt. Otherwise, if cut point vt−1 is
also within the same block as vt, we define w to be vt−1. By respective logic, we define u to be either the boundary
point which is the upper border of the uniform block that contains vtor the threshold vt+1. In any case, there are only
instances of one class between the point w and u, given that this class is c. We abbreviate freq(Cj,T) to be freq(j,T),
and define that

()

 () () (()()

() ())) loglogloglog1

log1

,log,loglog1

2222

2

1
2212

++−+++

−+++++=

′+′′′′+′′=

∑

∑

≠

=
+++

cj
jjjcccc

NClass

j
ttttttt

rpplrrlplp
T

qrrlplp
T

TjfreqTjfreqTjTTTT
T

lE

The information gain of the partition can be written as C

() () () (

′

′
++′

′
−= ∑∑

+=

−

=

h

ti
i

i
t

i
i

i TInfo
T
T

lET
T
T

TInfolgain
2

1

1
.

It has gain′(l)= −E′(l). Let gain′(l*)=−E′(l*)=0, we have
()

cc

cc

rpr
qrprpl

−−
+⋅−⋅

=* .

The second derivative of gain(l*) is expressed by

() ()

−+
−

−+
+

+
−

+
−=′′−=′′

**
** 11111

qrlqrlppT
lElngai

cc

,

which is larger than zero because 0≤ l*≤q, in other words, gain(l*) is not a local maximum. Since l* is chosen
arbitrarily, we have shown that gain(l) can only obtain its maximum value when the threshold vt is placed at either
of the points w and u, where l=0 and l=q respectively. That is, we can do an optimizing operator further on the

partition , so the optimizing process C
h

i iT
1=
′ ())()CL

k

i ir TOPOP
11 =

 is not an optimal optimizing process. This

 2002 Journal of Software 软件学报 2003,14(12)

conflicts with the previous hypothesis and the theorem has been proved.
From the proof of theorem 1, we can know that any partitions with some cutting points not defined on the

boundary points can be optimized. In our system, we use an easier optimizing process, but maybe not an optimal
one, which makes all the cutting points to be their better adjacent boundary points. The boundary optimizing
strategy is: checking each adjacent subsets Ti and Ti+1, if valA(s|Ti|,i) is a boundary point itself, do nothing for this
boundary, and check the boundary of Ti+1 and Ti+2 in turn; otherwise, find the lower border w and the upper border u
of the uniform block which contains s|Ti|,i, and do boundary optimizing operator as follows:

(){ } (){ }iAiiiAii TswsvalsTTTswsvalsTTCOP ∈>∪=′∈>−=′ ++ ,|,,|: 111 ,

(){ } (){ }11112 ,,,|: ++++ ∈≤−=′∈≤∪=′ iAiiiAii TsusvalTTTsusvalsTTCOP .

Suppose that the information gain of the partition after either of the above operators is gain(COP1) or gain(COP2)
respectively, if gain(COP1)≥ gain(COP2), COP1 will be chosen as the boundary optimizing operator for the
adjacent subsets Ti and Ti+1, otherwise COP2 will be chosen. If the operator makes one subsets empty, the number of
the subsets will reduce one. Provided that there are k intervals after the whole optimizing process, and attribute A
has been selected as the expanding attribute of the current interior node D, it will split D into k branches.

4 Pruning

RCAT is a dynamic discretization method for continuous attributes. In our decision tree generation, every
interior node uses the RCAT algorithm to evaluate each continuous attribute. After decision tree construction, we
may get a big tree with many redundant nodes. There are two pruning methods in our system to simplify the
decision tree constructed by RCAT.

4.1 Pessimistic pruning

Firstly we use pessimistic pruning[14] method to get a more reliable tree. When the original tree DT is used to
classify the N cases in the training set from which it is generated, let some leaf account for K of these cases with J
of them misclassified. J/K does not provide a reliable estimate of the error rate of that leaf when unseen cases are
classified, since the tree is tailored to the training set. A more realistic error rate is (J+1/2)/K. Let ST be a subtree of
DT containing L(ST) leaves and let ΣJ and ΣK be the corresponding sums over the leaves of ST, then the standard
error of this number of misclassification is:

()() ()()()
∑

∑∑∑ +−×+
=

K
STLJKSTLJ

se
2/2/ .

If ST is replaced by the best leaf, let E be the number of cases from the training set that it misclassifies, the
pessimistic pruning method will replace ST by the best leaf whenever E+1/2≤(ΣJ+L(ST)/2)+se. All non-leaf subtrees
are examined just once to see whether they should be pruned out.

4.2 Combination pruning

After pessimistic pruning, some redundant nodes remain in the decision tree if the tree has adjacent leaves
signed as the same class, so a combination pruning method which doesn’t influence classifying accuracy is explored
to simplify the decision tree further. We give the definition of adjacent leaves as follows:

Definition 4. In the decision tree constructed by RCAT, if two leaf nodes have the same parent associated with
a continuous attribute, and the intervals of the attribute for these two leaves are adjacent, we call these two nodes
adjacent leaves.

 蒋艳凰 等:具有高可理解性的二分决策树生成算法研究 2003

Combination pruning uses depth-first method to access the nodes of decision tree from left to right. If two
adjacent leaves have the same results (signed as the same class), then these two leaves should be combined into one
leaf with the same class as before. The interval of this combined leaf is enlarged, and the son number of their parent
is reduced by one. In Fig.3 (a), the expanding attributes of interior nodes X, Y, Z are X, Y, Z accordingly. The first
two sons of the node Y are adjacent leaves, and should be combined into one leaf with the interval of valY(s)≤y2.
Node Z has two adjacent sons with the same class C2, and two adjacent sons are signed as C1. After combination, Z
has only two sons. Fig.3 (b) is the pruned decision tree of Fig.3 (a).

X

Y

Z

() 1xsval X ≤ ()svalx X<1

() 1ysvalY ≤ () 21 ysvaly Y ≤< ()svaly Y<2

1C 1C 2C

() 1zsvalZ ≤ () 21 zsvalz Z ≤< () 32 zsvalz Z ≤< ()svalz Z<3

1C 1C2C
2C

X

Y

Z

() 1xsval X ≤ ()svalx X<1

()svaly Y<2() 2ysvalY ≤

1C

1C2C

2C
()svalz Z<2() 2zsvalZ ≤

(a) Before pruning (b) After pruning

Fig. 3 Combination PruningFig.3 Combination pruning

5 Empirical Evaluation

5.1 Experiment set-up

Six data sets are selected from the UCI Irvine machine learning repository[15] with all continuous attributes and
two classes. A description of data sets can be found in Table 1. For the unknown values in Breast-w and Heart data
sets, we set their values to the average of all known values of the corresponding attributes.

Table 1 Description of learning tasks

Abbrev Domain Cases Attributes Classes Default Acc (%)
Australian Credit card application 690 14 2 55.5
Breast-w Breast cancer (Wisc) 699 9 2 65.5

Bupa Bupa liver-disorders 345 6 2 58.0
Heart Heart disease 270 13 2 55.6

Ionosphere Radar returns recognition 351 34 2 64.1
Pima Pima Indian diabetes 768 8 2 65.1

We implement binarization and RCAT in decision tree generation. For both of the algorithms, we use
information gain as the evaluation function, and adopt pessimistic pruning and combination pruning to simplify the
constructed tree. Experiments are conducted by 10-fold cross validation, namely, for each data set, we use 9/10 of
data as training data to build the decision tree and the rest 1/10 as test data to evaluate performance, and report the
average results of these ten times.

5.2 Performance comparison

As introduced earlier, predictive accuracy and intelligibility are the most two important characteristics for a
learning algorithm. We compare RCAT with binarization from the following facets: predictive error rate, number of
nodes in decision tree (including interior nodes and leaf nodes), and building time. The parameters of RCAT are set
to LIMITR=10 and LIMITS=10. The experiment is conducted on Pentium 4-2GHz with 256MB memory, Linux OS.
Table 2 reports the empirical results. For predictive error rate and number of nodes, the results consist of mean and

 2004 Journal of Software 软件学报 2003,14(12)

deviation values; for building time, we just report the average time of 10-fold cross validation.

Table 2 Results of binarization and RCAT

Error rate (%) Nodes Time (ms) Task
Binarization RCAT Binarization RCAT Binarization RCAT

Australian 15.80±4.61 14.06±3.28 37.4±6.5 12.5±2.8 39.1 21.9
Breast-w 5.36±2.56 4.93±1.96 13.6±3.86 9.6±1.9 14.3 13.6

Bupa 31.47±6.51 35.29±8.43 40.2±6.8 13.1±2.5 7.8 5.3
Heart 19.26±6.49 16.67±6.11 15.4±4.2 11.2±0.6 6.1 4.7

Ionosphere 10.00±3.09 11.14±5.63 19.4±4.5 8.8±4.4 62.5 36.0
Pima 26.84±3.93 25.79±3.52 70.6±13.5 25.8±5.3 42.2 29.7

Average 18.12 17.98 33 14 28.7 18.5

From Table 2, we can see that for all of the data sets, the number of nodes in the binary classification trees
constructed by RCAT are much less than those built by binarization. For generalization, RCAT algorithm gets lower
error rates for four data sets than those of binarization, and the average error rate is a little lower too. These results
mean that RCAT algorithm can generate decision trees with higher intelligibility than binarization while retaining
predictive accuracy. For building time, all of the trees constructed by RCAT need less time than those built by
binarization. The reason is that RCAT needs no calculation of the information gain for every distinct values when it
processes continuous attributes.

Tree constructed by Binarization:
Att5 <=0.0409 : b (67|0)
Att5 >0.0409 :
 |Att27 <=0.9999 :
 | |Att3 <=0.0870 : b (5|0)
 | |Att3 >0.0870 :
 | | |Att8 <=-0.6727 : b (4|3)
 | | |Att8 >-0.6727 :
 | | | |Att3 <=0.7273 :
 | | | | |Att24 <=0.2263 :
 | | | | | |Att7 <=0.8512 : g (47|1)
 | | | | | |Att7 >0.8512 : b (2|0)
 | | | | |Att24 >0.2263 : b (5|3)
 | | | |Att3 >0.7273 : g (159|2)
 |Att27 >0.9999 :
 | |Att1 <=0.0000 : b (19|0)
 | |Att1 >0.0000 :
 | | |Att3 <=0.6616 : b (9|0)
 | | |Att3 >0.6616 :
 | | | |Att8 <=-1.0000 : b (6|0)
 | | | |Att8 >-1.0000 :
 | | | | |Att16 <=0.7253 : g (13|2)
 | | | | |Att16 >0.7253 : b (4|0)

Tree constructed by RCAT(10/10):
Att5 <=0.0414 : b (67|0)
 0.0414 <Att5 :
 | Att6 <=-0.8925 : b (17|0)
 | -0.8925 <Att6 <=0.7955 : g (219|25)
 | 0.7955 <Att6 :
 | | Att11 <=-0.2194 : g (6|1)
 | | -0.2194 <Att11 : b (16|0)

Decision tree for Ionosphere dataset

Tree constructed by Binarization:
Cell_size <=2.0 :
 |Nuclei <=3.0 : 0 (404|2)
 |Nuclei >3.0 :
 | |clump <=3.0 : 0 (11|0)
 | |clump >3.0 : 1 (10|2)
Cell_size >2.0 :
 |Nuclei <=3.0 :
 | |Cell_size <=6.0 :
 | | |Cell_shape <=2.0 : 0 (17|1)
 | | |Cell_shape >2.0 :
 | | | |Mitoses <=1.0 :
 | | | | |Adhesion <=3.0 : 0 (13|3)
 | | | | |Adhesion >3.0 : 1 (7|2)
 | | | |Mitoses >1.0 : 1 (4|0)
 | |Cell_size >6.0 : 1 (21|0)
 |Nuclei >3.0 : 1 (193|9)

Tree constructed by RCAT(10/10):
Cell_size <=2.5 :
 | Nuclei <=3.5 : 0 (404|2)
 | 3.5000 <Nuclei :
 | | clump <=3.5 : 0 (11|0)
 | | 3.5 <clump : 1 (10|2)
 2.5 <Cell_size :
 | Nuclei <=3.5 :
 | | Cell_size <=3.5 : 0 (25|5)
 | | 3.5 <Cell_size : 1 (31|7)
 | 3.5 <Nuclei : 1 (193|9)

Decision tree for Breast-w dataset

Fig.4 Tree constructed by binarization and RCAT(10/10)
Decision tree can be used to describe knowledge directly. Figure 4 gives the decision trees learned from all of

the cases in Breast-w and Ionosphere datasets respectively. We can see that the trees built by RCAT are much
smaller than those generated by binarization, and the knowledge represented by them can be understood more
easily.

6 Conclusions

Aiming at two-class problems, we explore a discretization method named RCAT for continuous attributes. It
uses binarization to get the multisplitting result through mapping a continuous attribute into another probability
attribute based on statistic information. Applying RCAT algorithm to a decision tree generation, we can get a much
smaller tree with higher intelligibility using less building time than binarization while retaining predictive accuracy.

 蒋艳凰 等:具有高可理解性的二分决策树生成算法研究 2005

References:
[1] Domingos P. The role of occam’s razor in knowledge discovery. Data Mining and Knowledge Discovery, 1999,3(4):409~425.

[2] Zhou ZH, Chen SF. Rule extraction from neural networks. Journal of Computer Research and Development, 2002,39(4):398~405

(in Chinese with English abstract).

[3] Setiono R, Liu H. Extracting rules from neural networks by pruning and hidden-unit splitting. Neural Computation, 1997,9(1):

205~225.

[4] Boz O. Converting a trained neural network to a decision tree: DECTEXT-decision tree extractor [Ph.D. Thesis]. Pennsylvania:

University of Lehigh, 2000.

[5] Windeatt T, Ardeshir G. An empirical comparison of pruning methods for ensemble classifiers. In: Hoffmann F, Hand DJ, eds.

Proceedings of the 4th International Conference on Intelligent Data Analysis. Lisbon: Springer-Verlag, 2001. 208~217.

[6] Fournier D, Crémilleux B. A quality index for decision tree pruning. Knowledge-Based System, 2002,15(1):37~43.

[7] Subramani M, William RS, Malcolm BD, Michael JP. Two-Stage machine learning model for guideline development. Artificial

Intelligence in Medicine, 1999,16(1):51~72.

[8] Auer P, Holte RC, Maass W. Theory and application of agnostic PAC-learning with small decision trees. In: Prieditis A, Russell S,

eds. Proceedings of the 12th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers, Inc.,

1995. 21~29.

[9] Langley P. Induction of condensed determinations. In: Proceedings of the 2nd International Conference on Knowledge Discovery

and Data Mining. Portland: AAAI Press, 1996. 327~330.

[10] Quinlan JR. C4.5: Programs for Machine Learning. San Mateo: Morgan Kaufmann Publishers, Inc., 1993.

[11] Elomaa T, Rousu J. General and efficient multisplitting of numerical attributes. Machine Learning, 1999,36(3):201~244.

[12] Dougherty J, Kohavi R, Sahami M. Supervised and unsupervised discretization of continuous feature. In: Prieditis A, Russell S, eds.

Proceedings of the 12th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers, Inc., 1995.

194~202.

[13] Liu H, Hussain F, Tan CL, Dash M. Discretization: An enabling technique. Data Mining and Knowledge Discovery, 2002,6(4):

393~423.

[14] Quinlan JR. Simplifying decision tree. International Journal of Man-Machine Studies, 1987,27:221~234.

[15] Bay SD. UCI KDD Archive. 1999. http://kdd.ics.uci.edu.

附中文参考文献：
[2] 周志华,陈世福.神经网络规则抽取.计算机研究与发展,2002,39(4):398~405.

	Introduction
	Concept Description
	Discretization and partition
	Evaluation functions: information gain

	RCAT Algorithm
	Interval initialization
	Binarization of probability attribute
	Interval combination
	Boundary optimization

	Pruning
	Pessimistic pruning
	Combination pruning

	Empirical Evaluation
	Experiment set-up
	Performance comparison

	Conclusions

