DOI: 10.11835/j.issn. 2096-6717. 2020. 189

土工格栅加筋碎石土动回弹模量及预估模型试验研究

张航1,周志刚2,韩健2

(1. 中交路桥建设有限公司,北京 100027;2. 长沙理工大学 道路结构与材料交通行业重点试验室,长沙 410004)

摘 要:加筋土路基动回弹模量是加筋土技术在道路工程中的重要设计指标。利用动三轴仪对土 工格栅加筋碎石土进行动回弹模量试验,对比分析了含水率、加筋方式、剪切及侧限影响表征量对 动回弹模量的影响规律,并回归分析了动回弹模量预估模型参数。研究结果表明:加筋土的动回弹 模量随着含水率的提高而降低;土工格栅应布设在土体中的水平剪切变形层位,增加加筋层数或减 少层间距,对提高动回弹模量的效果明显;在其他条件不变时,动回弹模量随剪切和侧限影响表征 量的增大而增大;NCHRP 1-28A 模型参数的回归结果比较理想,该模型可用于对土工格栅加筋土 动回弹模量的预测。

关键词:土工格栅;碎石土;动回弹模量;预估模型 中图分类号:TU411.3;U416.1 文献标志码:A 文章编号:2096-6717(2022)04-0052-08

Experimental analysis on dynamic resilience modulus and prediction model of geogrid reinforced gravel soil

ZHANG Hang¹, ZHOU Zhigang², HAN Jian²

(1. Road & Bridge International Co. Ltd., Beijing 100027, P. R. China; 2. Key Laboratory of Road Structure and Material of Communication Industry, Changsha University of Science and Technology, Changsha 410004, P. R. China)

Abstract: The dynamic resilience modulus of reinforced subgrade is an important design index of reinforced soil techniques in road engineering. In this paper, the dynamic resilience modulus test of geogrid-reinforced gravel soil was carried out by dynamic triaxial apparatus, and the influence pattern of water content, reinforcement mode, the shear and lateral influence characterization in the dynamic resilience modulus were comparatively analyzed. The prediction model parameters for dynamic resilience modulus were analyzed by regression. Experimental results showed that the dynamic resilience modulus of reinforced soil reduced with increase of moisture content. The geogrid should be laid in the horizontal shear deformation layer in the soil, the dynamic resilience modulus could be considerably improved by increasing the number of reinforcement layers or reducing the spacing of layers. When other conditions remained unchanged, the dynamic resilience modulus increased with the increase of shear and lateral influence characterization. The

作者简介:张航(1994-),男,主要从事特殊路基处治技术研究,E-mail:1207910527@qq.com。

Received: 2020-07-13

ZHOU Zhigang (corresponding author), PhD, professor, E-mail: zhou_zgcs@sina.com.

收稿日期:2020-07-13

基金项目:江西省交通科技计划项目(2015C0006)

周志刚(通信作者),男,博士,教授,E-mail:zhou_zgcs@sina.com。

Foundation item: Jiangxi Transportation Science and Technology Project (No. 2015C0006)

Author brief: ZHANG Hang (1994-), main research interest: special subgrade treatment technology, E-mail: 1207910527@qq.com.

parameter regression results of the NCHRP 1-28A model were satisfactory, the model could be used to predict the dynamic resilience modulus of geogrid-reinforced reinforced soil.

Keywords: geogrid; gravel soil; dynamic resilience modulus; prediction model

在现行沥青路面设计规范中,路基土的动回弹 模量是重要的设计参数[1]。动回弹模量是指路基土 体在动态荷载作用下产生的应力与其相应的回弹应 变的比值,表示路基在弹性变形阶段内,在垂直荷载 作用下抵抗竖向变形的能力。同时,加筋土技术因 其适应性强、经济性好以及生态环保的特点,在许多 现代道路工程中得到较为广泛的应用。诸多学者通 过室内外试验研究表明,在路基中布设土工格栅之 类的加筋材料有助于提高其回弹模量。如胡幼常 等[2]利用强度仪法测定了掺砂黄土和土工格栅加筋 黄土试样的回弹模量,结果表明,两种方法都能明显 提高黄土的回弹模量,同时使用效果更佳;Abu-Farsakh 等^[3]开展了承载板试验,发现土工合成材 料能使路面基层回弹模量显著提高;Kravchenko 等[4]通过不排水三轴压缩试验,证明加筋试样的回 弹模量要高于未加筋试样;罗正东等53研究了竹筋 格栅加筋路基的承载变形机理,发现加筋能有效控 制挖填路基的变形,对回弹模量提高产生一定的促 进作用。

然而,上述方法均属于对土基静态回弹模量的 研究,但路面上交通车辆对其施加的力都是动态的, 所以对路基动回弹模量的研究意义更为重大,因此, 学者们通过动三轴试验进行了更深入的探讨。如 Fardad Amini 等^[6]利用循环三轴试验,基于能量法 发现纤维加筋使砂土具有更高的循环抗剪能力;孙 磊[7]针对路基软黏土开展循环动三轴加载试验,讨 论了长期交通荷载下路基土回弹模量随动应力比的 变化情况;杨果岳等^[8]采用 GDS 振动三轴仪进行试 验,得到了不同因素对超固结重塑红黏土动弹性模 量的影响规律;刘维正等[9]通过路基土的动三轴试 验,研究了含水率、压实度等对动回弹模量的影响。 但是,动三轴试验中针对土工格栅加筋材料的讨论 还有所欠缺,需要更加系统全面的研究。同时,在中 国公路路基设计规范中指出,路基的动回弹模量由 CBR 强度通过经验公式换算得来^[10],但由此得到的 动回弹模量往往误差较大,并且精度不是很高。

笔者利用土工试验动三轴系统,通过对不同含 水率、加筋方式以及围压下的土工格栅加筋碎石土 试件进行动三轴试验,测试动回弹模量,探究其影响 因素和变化规律,并提出相应的土工格栅加筋碎石 土动回弹模量的预估方法,为路面结构设计时确定 路基土动回弹模量提供理论参考。

1 动三轴试验材料与方法

1.1 试验材料

1)筋材

加筋材料为湖北力特土工合成材料有限公司生产的高密度聚乙烯土工格栅 RS90PE。参照新的土工格栅国家标准,采取窄条拉伸方式,使用多功能材料试验机进行性能测试^[11]。其试验得到的物理力学指标如表1所示。

表 1 土工格栅拉伸性能 Table 1 Tensile properties of geogrid

试验	强度	试验	标准	是否符
方式	指标	结果	要求	合要求
窄条	拉伸强度/(kN•m ⁻¹)	91.4	≥90	符合要求
拉伸	2%伸长率时拉伸强度/($kN \cdot m^{-1}$)	27.3	$\geqslant 24$	符合要求
土工	5%伸长率时拉伸强度/($kN \cdot m^{-1}$)	53.4	≥50	符合要求
格栅	标准伸长率/%	10.23	≪11.50	符合要求

2)填料

加筋土所用试验土的碎石含量约为 63%,碎石 粒径主要集中在 $5\sim20 \text{ mm}$ 之间。通过颗粒组成统 计可知,该碎石土属于砾类土, $d_{10} = 1.74$ 、 $d_{30} = 4.58$ 、 $d_{60} = 9.66$,计算可得碎石土的不均匀系数 $C_u = 5.56 > 5$ 、 $C_c = 1.25$ 。所以,该碎石土易压密,级 配良好。通过击实试验得到试验用碎石土的最佳含 水量约为 7.1%,最大干密度约为 2.12 g/cm^3 。

1.2 试验方案

Seed 等^[12]在引入动回弹模量这一概念时,建议 采用重复加载动三轴试验确定动回弹模量的值,并 制定了相关的试验方法。在动三轴试验中,测定动 回弹模量的方法是在一定的围压下对试件施加轴向 动应力,循环施加至一定次数后,当动应变趋于稳定 时测定最后几次的值来确定动回弹模量。

1)加载序列的确定

在用动三轴试验测定动回弹模量时需要确定试 验加载序列。陈声凯等^[13]在 2006 年建立了动三轴 加载序列。对于碎石土之类的材料,所施加的动应 力幅值应由小依次增大进行试验。对于土工格栅加 筋碎石土动回弹模量的试验,其加载序列参考陈声 凯等建立的加载序列,围压分别取 50、100、150 kPa。 具体加载序列情况如表 2 所示。

表 2 土工格栅加筋土动回弹模量三轴测试方案加载序列 Table 2 Load sequence of triaxial test scheme for dynamic

resilience modulus of geogrid reinforced soil

加载	围压应	偏应力	轴向主应	加载	/
序列	力 σ ₃ /kPa	$\sigma_{\rm d}/{\rm kPa}$	力 σ_1/kPa	次数	σ_1 / σ_3
预加载	100	200	300	2 000	
1	50	25	75	100	1.5
2	100	50	150	100	1.5
3	150	75	225	100	1.5
4	50	50	100	100	2.0
5	100	100	200	100	2.0
6	150	150	300	100	2.0
7	50	75	125	100	2.5
8	100	150	250	100	2.5
9	150	225	375	100	2.5
10	50	100	150	100	3.0
11	100	200	300	100	3.0
12	150	300	450	100	3.0

在正式加载前先预加载,考虑到路基在施工期 承受的荷载比运营期高很多,所以室内模拟试验的 预加载比正式加载更严格。其他国家推荐的预加载 次数为 500~2 000 次^[14],因此,试验预加载次数选 取最大值 2 000 次。

2) 加载波形的确定

试验循环动荷载的加载波形选择半正弦波,加载频率为1Hz。在一个周期内,参照路面材料动三 轴试验时加载0.1s、间歇0.9s的做法,考虑车轮荷 载经过数十厘米厚的路面结构传递至路基顶面时影 响范围更大,路基土受荷时间延长,故加载时间选为 0.2s,间歇时间选为0.8s。

3)含水率的确定

研究表明,在给定的自然条件下,道路在运营期 内其路基的含水率会从最佳含水率逐渐增大,并最 终在与当地环境相适应的平衡含水率附近波动。 Quintus等^[15]通过对137条运营期道路路基含水率 的现场调查,发现路基的含水率介于最佳含水率和 150%最佳含水率之间。因此,试验的含水率定为 100%最佳含水率、115%最佳含水率、130%最佳含水率。

4)加筋方式的确定

试验试件为圆柱形,试验加筋方式分为不加筋、 加一层筋、加两层筋。其中,加一层筋时土工格栅放 置于试件截面中心位置,加两层筋时土工格栅分别 放置于距试件顶面和底面 50 mm 处。具体加筋方 式如图 1 所示。

Fig. 1 Reinforcement way

1.3 试验过程

1)试验仪器

在动三轴试验中,试件采用静压成型,主要成型 设备包括定制的对开模具和万能静压仪。试验加载 系统采用深圳 Reger 公司定制的土工试验动三轴系 统,该土工试验动三轴系统主要包括三大部分,分别 是控制和数据采集软件系统、加载系统和围压应力 提供系统。

2)试样制备

试件采用万能静压仪分层静压成型。每层填料 的质量根据所取得的压实度控制。由压实度、干密 度及试件的体积计算出所需的碎石土质量,试件分 5层进行压实,每一层的质量一致,压实厚度一致, 保证试件压实度均匀,试件最后一层静压结束后以 恒载静压5min。注意在压实过程中,每层压实完成 后用铲刀将碎石土表面划槽。为了避免试件断裂, 选择用专门尺寸的脱模机进行脱模。若脱模后不能 及时用于试验,则先用塑料保鲜膜包裹好,防止水分 蒸发。

3)试验操作基本步骤

安装试件,保证套好橡皮膜的试件置于三轴室 中间位置,并插入传力杆,完成注水。通过围压控制 器施加目标围压,当围压稳定后,再施加 10 N 的接 触应力,接着选择加载次数和加载序列,进行加载试 验。所有序列加载完毕后,依次抬起加载器,拔掉输 水管,拧开排水阀,取出传力杆。待三轴室内部的水 全部排出后,用扳手拧开螺丝,取下玻璃罩,取出试 件,去除套在试件表面的橡胶膜,然后观察试件是否 有明显的进水现象,如果进水比较明显则认为该次 试验失败,应该重新制备试件再进行试验。

2 动回弹模量影响因素分析

根据上述试验方案,每种组合工况要求3组平 行试件。利用动三轴试验,可以得到每组试件在重 复荷载作用下变形稳定后的重复应力和此时的回弹 应变,两者比值即为动回弹模量,可按式(1)计算。

$$M_{\rm R} = \frac{\sigma_{\rm d}}{\varepsilon_{\rm R}} \tag{1}$$

式中: $M_{\rm R}$ 为动回弹模量; $\sigma_{\rm d}$ 为轴向重复应力峰值, $\sigma_{\rm d} = \sigma_1 - \sigma_3$, σ_1 , σ_3 分别为最大主应力、最小主应力; $\epsilon_{\rm R}$ 为轴向回弹应变峰值。

对每个应力幅值的最后 10 次应力应变数据按 上式进行处理,取平均值视为当前应力幅值下所对 应的动回弹模量。每组平行试验结果与其均值相差 均应不超过 5%。

2.1 含水率对动回弹模量的影响

根据试验数据,绘制成图 2~图 4,分析比较试 件含水率对动回弹模量的影响。

Fig. 2 The relationship curves between dynamic elastic modulus and deviator stress without reinforcement

由图 2~图 4 可以看出,含水率对加筋土试件 动回弹模量值的影响比较明显。在其他条件不变 时,试件含水率越高则其动回弹模量值就越小。因 为在碎石土中含有少量粘土,而其含水率越高,结合 水膜厚度就越大,土颗粒之间的距离也越大,土体的 内聚力和内摩擦角就越小,从而导致土体的抗压性 能和抗剪强度的降低,水对土颗粒的润滑作用就越 大。水对土工格栅与碎石土颗粒之间也有类似的影 响。所以,在同一围压的应力幅值下,含水率越大, 试件的变形就越大,从而导致其动回弹模量越小。

单独分析试件在加两层筋且在同一围压下其动 回弹模量随含水率的变化情况。当含水率从最佳含 水率增加到 130%最佳含水率时:在 50 kPa 围压下, 回弹模量下降了 25.31%~32.31%,平均下降 29.68%;在 100 kPa 围压下,回弹模量下降了 28.54%~30.14%,平均下降 29.57%;在 150 kPa 围压下,回弹模量下降了 32.72%~34.56%,平均 下降 33.91%。

2.2 加筋方式对动回弹模量的影响

根据试验数据,绘制成图 5~图 7,分析比较试 件不同加筋方式对动回弹模量的影响。

由图 5~图 7 可以看出,当只加一层土工格栅时,试件动回弹模量基本没有发生变化,而当加了两 层土工格栅时,与不加和加一层相比,动回弹模量明 显增大。

在碎石土中加入土工格栅以后,在一定程度上 会改变土体的整体刚度。在试验过程中,不加土工 格栅和加一层土工格栅相比,动回弹模量值差别很 小,是因为在进行动三轴试验时,由于试件上下结构 和荷载的对称性,上下端部荷载传递至其中部时,横 截面上难以形成水平剪切错动状态,此时即使在试 件中部埋置了土工格栅,土工格栅与碎石土粒料之

图 5 100%最佳含水率下动回弹模量与偏应力关系曲线 Fig. 5 The relationship curves between dynamic resilience modulus and deviator stress under 100% optimal water content

间也难以形成剪切嵌锁效应,与未埋置土工格栅的 试件受力变形状态差别甚微,所以不加土工格栅和 加一层土工格栅相比,其动回弹模量并没有什么变 化。当加两层土工格栅时,即在距试件上下端面附 近各加一层土工格栅,在试件端部施加的荷载传递 至试件上下部的土工格栅位置时,产生了水平剪切 错动行为,使得土工格栅与碎石土土体之间产生剪 切嵌锁效应,约束了土体侧向变形,降低了轴向变 形,增加了碎石土体刚度,从而导致在加了两层土工 格栅后,试件的动回弹模量明显增大。由此可见,增 加加筋层数或减少层间距,有利于动回弹模量的 提高。

现单独分析试件在最佳含水率且在同一围压下 其动回弹模量随加筋程度的变化情况。当试件由不 加筋到加两层筋时:在50kPa围压下,回弹模量增 大了35.77%~39.17%,平均增大37.60%;在100 kPa围压下,回弹模量增大了33.40%~34.22%,平 均增大34.81%;在150kPa围压下,回弹模量增大 了28.62%~34.93%,平均增大31.87%。

2.3 剪切影响表征量对动回弹模量的影响

在动三轴测土工格栅加筋土动回弹模量试验 中,剪切影响表征量主要包括循环偏应力 σ_d 和八面 体剪应力 τ_{oct} ,一般情况下,默认 $\sigma_2 = \sigma_3 \pm \sigma_1 = \sigma_d + \sigma_3$,所以

$$\tau_{\rm oct} = \frac{\sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_1 - \sigma_3)^2 + (\sigma_2 - \sigma_3)^2}}{3} = \frac{\sqrt{2}}{3}\sigma_{\rm d}$$
(2)

由此可见,循环偏应力对动回弹模量的影响与 八面体剪应力一致。由图 2~图 7 可以看出,当围 压保持在一个固定数值时,测得的动回弹模量值随 偏应力的增大而呈现非线性增大,同理,动回弹模量 也是随八面体剪应力的增大而呈现非线性增大。分 析原因可知,当围压保持不变时,随着循环偏应力的 增大,试件的竖向变形也随着增大,但由于此时竖向 变形及应变增大的幅值小于循环偏应力增大的幅 值,所以此时试件的动回弹模量是呈现增大趋势的。

单独分析在最佳含水率且加两层筋时,试件动 回弹模量随循环偏应力的变化情况。在 50 kPa 围 压下,当偏应力由 25 kPa 增大到 100 kPa 时,回弹 模量增大了 3.32%~11.41%,平均增大 7.08%;在 100 kPa 围压下,当偏应力由 50 kPa 增大到 200 kPa 时,回弹模量增大了 2.50%~5.47%,平均增大 3.85%;在 150 kPa 围压下,当偏应力由 75 kPa 增 大到 300 kPa 时,回弹模量增大了 2.82%~3.90%, 平均增大 3.47%。

2.4 侧限影响表征量对动回弹模量的影响

在动三轴测土工格栅加筋土动回弹模量试验 中,侧限影响表征量主要包括围压应力 σ_3 和体应力 θ ,其中,体应力又称第一应力不变量且 $\theta = \sigma_1 + \sigma_2 + \sigma_3$ 。根据众多学者研究发现,在侧限影响表征量中, 体应力 θ 对动回弹模量的表征效果要好于围压应力 σ_3 。其内在机理为:在循环偏应力保持不变时,随着 围压的增加,动回弹模量值也会随之增加。这是因为随着围压的增大,侧限作用力的增大会使试件的 竖向变形减小,即应变减小,则在循环偏应力不变的 情况下,动回弹模量值增大。因为一般情况下默认 $\sigma_2 = \sigma_3 且 \sigma_1 = \sigma_d + \sigma_3$,所以经过化简后体应力 $\theta =$ $3\sigma_3 + \sigma_d$,由此可见,体应力 θ 不仅考虑围压应力对动 回弹模量的影响,还考虑了循环偏应力变化带来的 影响,故体应力 θ 能更好地表征动回弹模量的变化, 其是具有普适性的。在分析体应力对动回弹模量的 影响时,分别考虑试件在不加筋、加一层筋和加两层 筋时,其动回弹模量随体应力的变化情况,整理数 据,绘制成图 8~图 10。

Fig. 8 The relationship curves between dynamic elastic modulus and body stress without reinforcement

从上图可以看出,在同一围压、同一含水率下, 加筋土试件的动回弹模量是随着体应力的增大而增 大的。其增大情况与同一围压、同一含水率下,加筋 土试件的动回弹模量随着偏应力的增大情况保持 一致。

3 动回弹模量预估模型研究

为了提供路面结构设计时所需的路基动回弹模量的确定方法,选用 NCHRP 1-28A 推荐的模量预

估模型(见式(3)),NCHRP 1-28A 模型既考虑了剪 切影响表征量对动回弹模量的影响,也考虑了侧限 影响表征量对动回弹模量的影响,可以更加全面地 反映各种应力对动回弹模量的影响,并且美国国有 公路运输管理协会也推荐使用该模型进行回归^[16]。 针对不同加筋方式、不同含水率下的碎石土动回弹 模量试验结果,利用 Origin 软件的多元非线性回归 分析进行处理,得到相应的模型参数值,如表 3 所示。

$$M_{\rm R} = k_1 P_{\rm a} \left(\frac{\theta}{P_{\rm a}}\right)^{k_2} \left[\frac{\tau_{\rm oct}}{P_{\rm a}} + 1\right]^{k_3} \tag{3}$$

式中: P_a 为大气气压,一般取 100 kPa; θ 为第一应力 不变量; τ_{oet} 为八面体剪应力; k_1 、 k_2 、 k_3 为回归参数。

表 3 加筋土动回弹模量预估模型参数回归结果 Table 3 The parameter regression results of the prediction model of dynamic resilience modulus of reinforced soil

试件加 筋方式	最佳含水 率的倍数/%	k_1	k_2	k_3	回归相 关系数
不 加	100	2.186	0.209	0.130	0.973
	115	1.363	0.345	0.096	0.949
筋	130	1.179	0.251	0.140	0.980
-Let 1	100	2.187	0.204	0.126	0.975
川1 日銘	115	1.397	0.327	0.104	0.950
压肌	130	1.220	0.239	0.135	0.981
	100	3.099	0.173	0.107	0.937
川 2 民銘	115	2.350	0.196	0.149	0.963
広肋	130	2.308	0.108	0.145	0.910

回归拟合结果的好坏通常用相关系数 R²来表示,当得到的 R²接近于1时表示拟合结果较好。从 上表可以看出,动三轴试验经数据回归后得到的相 关系数 R²比较接近于1,说明 NCHRP 1-28A 模型 具有较高的合理性。具体分析上表中的模型参数值 时可以发现:k1值的规律性比较强,当试件的加筋方 式保持不变时,其值随着含水率的增加而减小,并且 由 100%最佳含水率到 115%最佳含水率的减小幅 度较大;k2值也具有一定的规律性,当试件的加筋方 式保持不变时,其值随着含水率的增加呈现出先增 大后减小的趋势;整体来看,k3值的规律性并不强, 之前 k3的经验值往往为负值,但试验数据回归出来 的 k3为正值,这可能跟材料本身的性能有关,因为碎 石土试件在发生塑性变形后易发生应变硬化现象, 同时加筋后的筋材对土体变形起到了一定的约束作 用,所以动回弹模量与八面体剪应力呈现出了正相 关的趋势。

4 结论

1)含水率对土工格栅加筋碎石土的动回弹模量 的影响明显,130%最佳含水率会使得最佳含水率下 成型的试件动回弹模量平均降低约 30%左右。因 此,在进行路面结构设计时应按平衡含水率测试确 定土工格栅加筋土动回弹模量,以真实地反映加筋 土实际的抗变形能力。

2) 土工格栅加筋碎石土的动回弹模量与土工格 栅埋设的位置和加筋层数有一定的关系。土工格栅 应埋设在土体中存在水平剪切变形的层位,增加加 筋层数或减少层间距,有助于提高加筋土体的抗变 形能力。

3)加筋土体所承受的应力级位对土工格栅加筋 碎石土的动回弹模量有显著影响。在其他条件不变 时,动回弹模量均随着循环偏应力和八面体剪应力 的增大而增大。在侧限影响表征量中,体应力比围 压应力能更好地表征动回弹模量的变化,在围压等 其他条件相同时,加筋土试件的动回弹模量随着体 应力的增大而增大。

4)为了提供路基动回弹模量的确定方法,选取 NCHRP 1-28A 推荐的预估模型作为本次动三轴试 验的验证模型。通过 Origin 软件的多元非线性回 归分析可以发现,回归结果中的相关系数比较理想, 说明该模型也可用于土工格栅加筋碎石土动回弹模 量的预测。

参考文献:

[1] 公路沥青路面设计规范: JTG D50-2017 [S]. 北京:

人民交通出版社,2017.

Specifications for design of highway asphalt pavement: JTG D50-2017 [S]. Beijing: China Communications Press, 2017. (in Chinese)

[2]胡幼常,申俊敏,赵建斌,等. 土工格栅加筋掺砂黄土 工程性质试验研究[J]. 岩土力学,2013,34(Sup 2): 74-80,87.

HU Y C, SHEN J M, ZHAO J B, et al. Experimental study of engineering properties of geogrid-reinforced loess mixed with sand [J]. Rock and Soil Mechanics, 2013, 34(Sup2): 74-80, 87. (in Chinese)

- [3] ABU-FARSAKH M, HANANDEH S, MOHAMMAD L, et al. Performance of geosynthetic reinforced/stabilized paved roads built over soft soil under cyclic plate loads [J]. Geotextiles and Geomembranes, 2016, 44(6): 845-853.
- [4] KRAVCHENKO E, LIU J K, NIU W W, et al. Performance of clay soil reinforced with fibers subjected to freeze-thaw cycles [J]. Cold Regions Science and Technology, 2018, 153: 18-24.
- [5] 罗正东, 谌灿, 董辉, 等. 竹筋格栅加筋山区挖填路基 承载变形机理研究[J]. 实验力学, 2019, 34(5): 824-832.

LUO Z D, CHEN C, DONG H, et al. Study of the bearing deformation mechanism of bamboo bamboo tendon grating strengthened subgrade excavation and filling in mountain area [J]. Journal of Experimental Mechanics, 2019, 34(5): 824-832. (in Chinese)

- [6] FARDAD AMINI P, NOORZAD R. Energy-based evaluation of liquefaction of fiber-reinforced sand using cyclic triaxial testing [J]. Soil Dynamics and Earthquake Engineering, 2018, 104: 45-53.
- [7] 孙磊. 部分排水条件下软黏土的循环三轴变形特性 [J]. 工业建筑, 2019, 49(6): 111-116. SUN L. Deformation characteristics of soft clay in partially drained cyclic triaxial tests [J]. Industrial Construction, 2019, 49(6): 111-116. (in Chinese)
- [8]杨果岳,程雨竹,徐运龙,等.交通荷载作用下安宁地区超固结重塑红黏土的动力特性试验研究[J].实验力学,2019,34(4):675-683.
 YANG G Y, CHENG Y Z, XU Y L, et al. Experimental study on dynamic characteristics of overconsolidated remolded red clay subjected to traffic load in Anning area [J]. Journal of Experimental Mechanics, 2019, 34(4):675-683. (in Chinese)
- [9]刘维正,曾奕珺,姚永胜,等.含水率变化下压实路基

土动态回弹模量试验研究与预估模型[J]. 岩土工程学报,2019,41(1):175-183.

LIU W Z, ZENG Y J, YAO Y S, et al. Experimental study and prediction model of dynamic resilient modulus of compacted subgrade soils subjected to moisture variation [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 175-183. (in Chinese)

- [10] 公路路基设计规范: JTG D30—2015 [S]. 北京:人民 交通出版社, 2015.
 Specifications for design of highway subgrades: JTG D30-2015 [S]. Beijing: China Communications Press, 2015. (in Chinese)
- [11] 土工合成材料 塑料土工格栅: GB/T 17689—2008
 [S]. 北京:中国标准出版社, 2008.
 Geosynthetics-Plastic geogrids. GB/T 17689-2008 [S].
 Beijing: Standards Press of China, 2008. (in Chinese)
- [12] SEED H B, CHAN C K, LEE C E. Resilience characteristics of subgrade soils and their relation to fatigue failures in asphalt pavements[C]// Proceedings of the International Conference on the Structural Design of Asphalt Pavements. Michigan, 1962: 611-636.
- [13] 陈声凯, 凌建明, 张世洲. 路基土动态回弹模量室内试

验加载序列的确定[J]. 公路, 2006, 51(11): 148-152. CHEN S K, LING J M, ZHANG S Z. Fixing loading sequence for resilient modulus test of subgrade soil [J]. Highway, 2006, 51(11): 148-152. (in Chinese)

- [14] THADKAMALLA G B, GEORGE K P. Characterization of subgrade soils at simulated field moisture [J]. Transportation Research Record, 1995, 1481:21-27.
- [15] QNINTUS H L, RAO C, STUBSTAD R N, et al. Nondestructive testing technology for quality control and acceptance of flexible pavement construction [J]. Draft Interim Report NCHRP, 2006: 10-65.
- [16] 凌建明, 苏华才, 谢华昌, 等. 路基土动态回弹模量的 试验研究[J]. 地下空间与工程学报, 2010, 6(5): 919-925.

LING J M, SU H C, XIE H C, et al. Laboratory research on dynamic resilient modulus of subgrade soil [J]. Chinese Journal of Underground Space and Engineering, 2010, 6(5): 919-925. (in Chinese)

(编辑 胡玲)