DOI:10.3880/j.issn.1006-7647.2008.03.017

模糊优选神经网络 BP 模型在黄河内蒙段 封开河预报中的应用

冀鸿兰1 朝伦巴根1 陈守煜2

(1.内蒙古农业大学水利与土木建筑工程学院,内蒙古,呼和浩特 010018;2.大连理工大学土木水利学院,辽宁,大连 116024)

摘要:黄河内蒙段地处黄河流域最北端,由于它特殊的地理位置、水文气象条件、河道特性,几乎年 年发生凌汛。在分析凌汛成因影响因素的基础上,选取合适的预报因子,基于模糊优选神经网络 BP 模型 对黄河内蒙段封河、开河日期进行样本训练和预报方案验证。 预报结果表明 模糊优选神 经网络冰凌预报模型计算简便 精度良好。

关键词 相对优属度 模糊优选 神经网络 封河日期 开河日期

中图分类号:P338+.4

文献标识码:B

文章编号:1006-7647(2008)03-0070-03

Application of fuzzy optimization neural network BP approach in forecasting freeze-up and break-up date in the Inner Mongolia reach of the Yellow River//JI Hong-lan¹, CHAOLUN Ba-gen¹, CHEN Shou-yu²(1. School of Hydraulic & Civil Engineering, Inner Mongolia Agricultural University, Huhehot 010018, China; 2. School of Civil & Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China)

Abstract: The Inner Mongolia reach lies in the top north of the Yellow River. Every year, ice flood occurs in this district because of its special geographical position, hydro-meteorological conditions and river characteristics. Based on analysis of all kinds of factors influencing ice flood, some forecasting indicators are selected, and a new fuzzy optimization neural network BP approach is proposed. The application of this new approach in forecasting the freeze-up and break-up date of the Inner Mongolia reach of the Yellow River shows that this new approach is of high accuracy and the calculation procedure is simple.

Key words: relative membership degree; fuzzy optimization; neural network; freeze-up date; break-up date

凌汛是由河道中冰凌对水流的阻力作用而引起 的一种涨水现象。黄河内蒙段几乎每年都发生凌 汛 这是由它特殊的地理位置、水文气象条件、河道 特性决定的。黄河内蒙段每年冬春季节都有不同程 度的冰害发生,针对这种情况,分析影响河流冰情的 热力因素、动力因素、河势因素,相对准确地预报封 河、开河日期,对防凌具有十分重要的意义。目前, 国外对封河、开河日期预报研究较多的是美国 Clarkson 大学的沈洪道教授 1-4] 主要依据热交换原 理和冰水力学理论建立数学模型。国内学者在 20 世纪80年代末期与沈洪道教授合作研制了黄河下 游封河、开河预报数学模型。水利部黄河水利委员 会水文局也先后建立了黄河下游和上游实用封河、 开河预报数学模型 5-6]。笔者在分析影响凌汛的物 理因素的基础上 选取合适的预报因子 运用模糊优 选神经网络 BP 模型 7-8],对黄河内蒙段封河、开河 日期讲行预报。

模糊优选神经网络 BP 模型

图 1 所示是一个 3 层的模糊优选神经网络系 统 输入层有 m 个输入节点 即有 m 个目标 隐含 层有 l 个隐节点 ,即有 l 个单元系统 ,输出层仅有 1个节点输出。

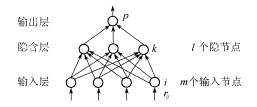


图 1 3 层模糊优选神经网络

设决策系统有 n 个满足约束条件可供优选的 方案。方案的优劣根据 m 个目标特征值进行识别 , 则有 n 个方案、m 个目标特征值的矩阵为

$$X = (x_{ii}) \tag{1}$$

式中 x_{ii} 为方案 j 目标 i 的特征值(i = 1, 2, ..., m;

基金项目:国家自然科学基金(59979008)

作者简介 冀鸿兰(1970—),女,内蒙古呼和浩特人,博士,从事水文水资源及工程模糊集研究。 E-mail honglanji@sina.com

$$j = 1, 2, ..., n$$

为消除目标特征值量纲不同的影响,需要将矩阵 X 规格化,即分别对越大越优型、越小越优型目标特征值采用不同的规格化公式,将矩阵 X 转化为目标相对优属度矩阵:

$$\mathbf{R} = (r_{ij}) \tag{2}$$

式中 r_{ij} 为方案 j 目标 i 的相对优属度(i = 1, 2, ..., m j = 1, 2, ..., m).

在输入层 ,节点 i 将信息直接传给隐含层节点 , 故节点输出与输入相等 ,即

$$u_{ii} = r_{ii} \tag{3}$$

式中 u_{ij} 为输入层节点 i 的输出。对隐含层的节点 k μ μ μ μ

$$I_{kj} = \sum_{i=1}^{m} w_{ik} r_{ij}$$
 (4)

式中 w_{ik} 为输入层与隐含层节点的连接权重。隐含层的输出为

$$u_{kj} = \frac{1}{1 + \left[\left(\sum_{i=1}^{m} w_{ik} r_{ij} \right)^{-1} - 1 \right]^{2}} = \frac{1}{1 + \left(\frac{1}{I_{kj}} - 1 \right)^{2}}$$

输出层仅有 1 个节点 p 其输入为

$$I_{pj} = \sum_{k=1}^{l} w_{kp} u_{kj} \tag{6}$$

式中 w_{kp} 为隐含层与输出层节点的连接权重。输出层的输出为

$$u_{pj} = \frac{1}{1 + \left[\left(\sum_{k=1}^{l} w_{kp} u_{kj} \right)^{-1} - 1 \right]^{2}} = \frac{1}{1 + \left(\frac{1}{I_{pj}} - 1 \right)^{2}}$$

网络的实际输出 u_{pj} 就是模糊优选神经网络 BP 模型对输入 r_{ij} 的响应 ,设样本 j 的期望输出为 $M(u_{pj})$ 其均方误差为

$$E_{j} = \frac{\left[u_{pj} - M(u_{pj}) \right]^{2}}{2} \tag{8}$$

应用梯度下降法,调节网络中的连接权重使 E_j 最小。隐含层节点 k 与输出层节点 p 的权重调整量公式为

$$\Delta w_{kp} = 2 \eta u_{pj}^2 u_{kj} \frac{1 - \sum_{k=1}^{l} w_{kp} u_{kj}}{\left(\sum_{k=1}^{l} w_{kp} u_{kj}\right)^3} [M(u_{pj}) - u_{pj}] (9)$$

式中 η 为学习效率。

输入层节点 i 与隐含层节点 k 的权重调整量公式为

$$\Delta w_{ik} = 2 \eta r_{ij} w_{kp} u_{kj}^2 \frac{1 - \sum_{i=1}^{m} w_{ik} r_{ij}}{\left(\sum_{i=1}^{m} w_{ik} r_{ij}\right)^3} \delta_{pj} \qquad (10)$$

其中
$$\delta_{pj} = 2u_{pj}^2 \frac{1 - \sum_{k=1}^l w_{kp} u_{kj}}{\left(\sum_{k=1}^l w_{kp} u_{kj}\right)^3} [M(u_{pj}) - u_{pj}]$$

从而得到权重调整公式为

$$w_{ik}(t+1) = w_{ik}(t) + \Delta w_{ik}(t+1) + \alpha \Delta w_{ik}(t)$$
(11)

$$w_{kp}(t+1) = w_{kp}(t) + \Delta w_{kp}(t+1) + \alpha \Delta w_{kp}(t)$$
(12)

式中:t 为迭代次数; α 为动量系数 $0 < \alpha < 1$ 。

应用上述模型公式,并根据通常神经网络的迭 代算法,可确定网络的连接权重值,使实际输出与期 望输出的误差最小。

2 黄河内蒙段封河、开河日期预报

2.1 确定预报因子

影响凌汛的三大因素是热力因素、动力因素、河势因素。热力因素主要有太阳辐射热、气温、水温、降水、降雪、动力因素主要有水位、流速、流量、风速;河势因素主要有河道比降、糙率、河面宽度、弯曲度。太阳辐射热是形成不同气候条件和气候变化的基本因素,水温是大气与河流水体热交换的结果,二者与气温密切相关。黄河内蒙段冬春季节降水降雪较少,在过水断面面积不变的情况下,水位、流速与流量具有函数关系。笔者对河势因素未加考虑,原因是河势因素相对变化不大。冰情数据源于黄河内蒙段沿线各测站的统计资料,基本能够反映内蒙段的冰情现象,且精度可靠。计算热力因素、动力因素中的每个影响因子分别与封河历时及开河历时的相关系数,根据相关系数的大小确定封河、开河日期的预报因子。结果见表1和表2。

表 1 封河历时与各预报因子的相关系数

预报因子	封河历时			
ר ובו אונאיו	巴彦高勒站	三湖河口站	头道拐站	
累计负气温	- 0.8419	-0.6659	-0.8780	
水位	0.5206	0.1858	0.2045	
流量	0.0908	0.3595	-0.0340	

表 2 开河历时与各预报因子的相关系数

预报因子 -		封河历时			
例如一	巴彦高勒站	三湖河口站	头道拐站		
累计正气温	-0.2512	-0.2409	0.0253		
水 位	-0.0965	0.1369	-0.1936		
流量	0.0298	- 0.1241	-0.0170		
封冻期最大冰厚	-0.6683	-0.4860	-0.4730		

2.2 规格化预报因子集和预报对象集

收集到黄河内蒙段沿线四站(巴彦高勒站—三湖河口站—昭君坟站—头道拐站)的水情、冰情资料。昭君坟站未做研究,这是因为该站在20世纪80

年代不再隶属于水利部黄河水利委员会,后续资料 缺失。受篇幅限制,仅提供三湖河口站开河日期预 报的求解过程,其他三站做类似求解。三湖河口站 封河、开河历时预报因子见表 1 和表 2。 预报因子 特征值与开河历时见文献 91,进行规格化处理,分 别得到目标相对优属度矩阵 R 和预报对象的规格 化向量A。

 $\lceil 0.6833 \quad 0.6797 \quad 0.8696 \quad 0.5761 \quad 0.9558 \quad 0.9014 \quad 0.8768^{-1}$

	0.0055	0.0171	0.0070	0.5701	0.7550	0.7014	0.0700
	0.4231	0.5625	0.6106	0.8654	0.6346	0.7885	0.2885
? =	0.0845	0.2113	0.8268	0.2113	0.6817	0.5732	0.2113
	0.2667	0.0667	0.4444	0.00667	0.6000	0.5556	0.3778
	0.9601	0.5891	0.9572	0.9572	0.0000	0.7399	0.9043
	0.5481	0.6106	0.6923	0.3846	0.4712	0.6538	0.0000
	0.7606	0.6352	0.7408	0.8563	0.4493	0.6324	0.7338
	0.5556	0.2889	0.8444	0.8000	0.0000	0.2667	0.4667
	0.8268	0.8391	0.8326	0.8138	0.8993	0.9116	0.8848
	0.3125	0.6154	0.3750	0.6106	0.0144	0.2548	0.5000
	0.1268	0.2817	0.7817	0.3099	0.8592	0.8732	0.1831
	0.6444	0.4222	0.3333	0.5111	0.5556	0.6667	0.8889
	0.9130	0.6913	0.8833	0.5667	0.9087	1.0000	0.9428
	0.5048	0.1250	0.2019	0.9760	0.4663	0.6106	1.0000
	0.5634	0.6761	0.8732	0.0423	1.0000	0.7606	0.0000
	L _{0.7778}	1.0000	0.9333	0.7778	0.9333	0.9778	0.7111-

 $A = (0.4783 \ 0.4783 \ 0.7826 \ 0.6957$

 $0.3478 \, 0.6087 \, 0.4783 \, 0.2609 \, 0.6957$

 $0.6957 \, D.3478 \, D.7826 \, D.6957 \, D.3478$,

 $0.2609 \, \Omega.3913 \, \Omega.3913 \, \Omega.4348 \, \Omega.3478$

0.565210.56520.69570.65220.7391

 $0.4348 \ 0.6957 \ 0.6087 \ 0.7826 \ 0.6087 \ 0.7391$

2.3 封河、开河历时预报结果

R

这里的模糊优选神经网络系统中输入层有 4 个 输入节点 隐含层设 5 个隐节点 输出层仅有单节点 输出。根据前述方法用前 28 a 资料对网络反复训练, 直到满足精度要求。对完成训练后的神经网络模型 用后 5a 资料进行检测 预报结果见表 3 和表 4。

表 3 各测站开河历时预报

三湖河口站 巴彦高勒站 头道拐站 时间 实测值 预报值 实测值 预报值 实测值 预报值 1996~1997年 35 53 45 50 1997~1998年 40 39 47 52 56 52 1998~1999年 44 42 54 50 58 53 1999~2000年 46 47 44 38 44 2000~2001年 43 52 57 41 35

2.4 预报结果分析

黄河内蒙段冰凌封河、开河日期预报属于中长 期预报 根据《水文情报预报规范》中有关冰情预报 的规定[10],并参照内蒙古自治区水利厅防汛指挥部

表 4 各测站封河历时预报

时间	三湖河口站		巴彦高勒站		头道拐站	
	实测值	预报值	实测值	预报值	实测值	预报值
1997~1998年	33	30	41	45	40	43
1998~1999年	39	29	51	57	72	67
1999~2000年	43	39	54	55	35	31
2000~2001年	33	29	54	59	55	59
2001~2002年	38	31	45	51	43	45

多年的防凌减灾实践, 预见期定为 16 d, 能较好地满 足实际工作要求。线性内插,得到许可误差为6d。 由预报检验结果表 3 和表 4 可知 30 个预报工况中 有27个误差天数在6d或6d以内,合格率为90%。 另有3个预报工况误差天数超出6d 峰值为10d且 仅出现1次,由此可知本文的预报精度较高。

3 结 论

笔者分析了影响凌汛的物理因素,选取合适的 预报因子 探讨了基于模糊优选神经网络冰凌预报 的建模原理及方法,对黄河内蒙段封河、开河日期进 行样本训练和预报方案验证,并对验证结果进行误 差分析。结果表明模型精度良好,能够较好地预报 封河、开河日期 对实际工作有参考价值。与传统的 以热交换原理和冰水力学理论为基础的数学模型相 比 本文方法计算简便 克服了原有模型需要已知上 下游相关站大量参数的缺点。对于预报精度较低的 特殊年份 建议在预报因子种类与数目的选取上做 进一步的深入研究。

参考文献:

d

- [1] SHEN Hong-dao. Dynamic transport of river ice[J]. Journal of Hydraulic Research , 1990 28(6):659-671.
- [2] SHEN Hong-dao. Under cover transport and accumulation of frazil granules[J]. Journal of Hydraulic Engineering , 1995 , 121(2):184-195.
- [3] SHEN Hong-dao. A unified degree-day method for river ice cover thickness simulation [J]. Canadian Journal of Civil Engineering , 1985 , 12(3):54-62.
- [4] FOLTYN E P. Lawrence river freeze-up forecast[J]. Journal of Waterway ,1986 ,112(4):467-481.
- [5]陈赞廷.黄河冰凌预报方法评述[M].郑州:黄河水利出 版社 2000.
- [6]水利部黄河水利委员会水文局.流冰、封河、开河成因及 其预报模型研究 M]. 郑州 黄河水利出版社 2002.
- [7]陈守煜.复杂水资源系统优化模糊识别理论与应用[M]. 长春:吉林大学出版社 2002.
- [8]陈守煜.工程模糊集理论与应用[M].北京:国防工业出 版社 1998.
- [9]冀鸿兰.黄河内蒙段凌汛成因分析及封开河日期预报模 型研究 D].呼和浩特:内蒙古农业大学 2002.
- [10] SL250-2000, 水文情报预报规范 S].

(收稿日期 2007-07-11 编辑: 骆超)