首页 | 官方网站   微博 | 高级检索  
     

量子涡旋陀螺若干关键参数的仿真计算(特邀)
引用本文:任元,吴昊,王琛,刘政良,刘通,熊振宇.量子涡旋陀螺若干关键参数的仿真计算(特邀)[J].红外与激光工程,2022,51(4):20220004-1-20220004-10.
作者姓名:任元  吴昊  王琛  刘政良  刘通  熊振宇
作者单位:1.航天工程大学 基础部,北京 101400
基金项目:国防科技创新特区项目(18-×××-04-ZT-002-019-01);国家自然科学基金(62173342, 11772001, 61805283)
摘    要:半导体微腔中由光驱动的激子极化激元体系是近年来热门的物理学、光学领域研究方向,而半导体微腔中由光驱动的玻色-爱因斯坦凝聚体(Bose-Einstein Condensates, BEC)的量子叠加态涡旋在量子传感领域具有颠覆性的潜在应用价值。通过Runge-Kutta差分和FDTD有限元方法构建了一个精确的数学模型来表征量子涡旋陀螺激子极化激元体系的时空演化规律。在此基础上,研究了泵浦光、信号光和与半导体微腔材料相关的一些关键参数对量子涡旋陀螺激子极化激元凝聚体演化特性的影响。其中泵浦光和信号光考虑了环形光斑的几何尺寸以及它们的光强,而微腔材料对激子极化激元体系的影响通过数学上的变换,折算为有效质量对BEC体系的影响。通过大量参数扫描,得到了影响量子涡旋陀螺性能的一些关键因素,包括泵浦光的几何参数和强度、泵浦光和信号光的相关影响以及半导体微腔的材料特性。通过表征不同微腔材料的有效质量与性能之间的关系,计算了材料性能与量子涡旋陀螺仪叠加态演化之间的关系,发现有效质量的合理值范围很窄。这些工作为量子涡旋陀螺的工程样机研发提供了重要参考。

关 键 词:量子涡旋陀螺仪    激子极化激元    轨道角动量    叠加态涡旋    时空演化特性
收稿时间:2021-12-31

Simulation analysis of some key parameters of quantum vortex gyroscope (Invited)
Affiliation:1.Department of Basic, Space Engineering University, Beijing 101400, China2.Department of Aerospace Science and Technology, Space Engineering University, Beijing 101400, China3.Lab of Quantum Detection & Awareness, Space Engineering University, Beijing 101400, China4.State Key Laboratory for Laser Propulsion and its Applications, Space Engineering University, Beijing 101400, China
Abstract:The exciton polaritons in the semiconductor microcavity driven by light is a hot research field in physics and optics in recent years, and the superposition quantized vortex of the Bose-Einstein Condensates (BEC) driven by light in the microcavity has subversive potential application value in the field of quantum sensing. An accurate mathematical model via Runge-Kutta Difference and FDTD finite element method was constructed to characterize the time-space evolution of the quantum vortex gyrotron polariton system. On this basis, the influence of some key parameters related to pump light, signal light and semiconductor microcavity materials on the evolution characteristics of the quantum vortex gyroscope exciton polariton condensate was studied. For the pump light and signal light, the light intensity and geometric size of the annular spot were considered. Meanwhile, the effect of the microcavity material on the exciton polariton system was converted into the effect of the effective mass on the BEC system through mathematical transformation. By scanning a lot of parameters, some key factors affecting the performance of the quantum vortex gyroscope were obtained, including the geometric parameters and intensity of the pump light, the related influence of the pump light and the signal light, and the material properties of the semiconductor microcavity. The relationship between material properties and superposition state evolution of quantum vortex gyroscope was calculated by characterizing the relationship between effective mass and properties of different microcavity materials, and the range of reasonable values for effective mass was found to be narrow. These works provided an important reference for the engineering prototype development of the quantum vortex gyroscope.
Keywords:
点击此处可从《红外与激光工程》浏览原始摘要信息
点击此处可从《红外与激光工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号