首页 | 官方网站   微博 | 高级检索  
     


Uniting Strength and Toughness of Al Matrix Composites with Coordinated Al3Ni and Al3Ti Reinforcements
Authors:Frederick M Heim  Yunya Zhang  Xiaodong Li
Affiliation:Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer's Way, Charlottesville, VA 22904‐4746 (USA)
Abstract:Hybrid aluminum composites are fabricated in a novel manner to characteristically induce a layer‐wise aligned distribution of micro‐scale Al3Ni and Al3Ti intermetallic particles that are formed in situ within a ductile Al matrix. The simple and unique Rolling of Randomly Orientated Layer‐wise Materials (RROLM) manufacturing methodology enables microstructural tailoring of the intermetallic reinforcing particles to prescribe enhanced crack tip deflection caused by the complex interaction of local veins of reinforcement particles, in an effort to overshadow the classical loss of toughness in large‐particle reinforced composites. The complimentary reinforcements and their interface with the Al matrix are revealed to have a gradual transition zone that functions to maintain critical cohesion with the particles and the matrix, empowering the superior load transfer capability of the particles, and reducing microvoid penetration into the matrix. In situ three‐point bending observations combined with a local strain field analysis, demonstrate the distinctive crack deflection mechanisms exhibit by the composite. Deviating from the norm, this specialized particle reinforced composite exhibited both strengthening and toughening mechanisms simultaneously, over control samples. The investigated design strategy and model material will assist materials development toward light‐weight, stronger, and tougher particle reinforced Al matrix composites.
Keywords:particle reinforced  aluminum matrix composite  microstructural tailoring  intermetallic  crack deflection
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号