首页 | 官方网站   微博 | 高级检索  
     

碲镉汞线性雪崩焦平面器件评价及其应用(特邀)
引用本文:张应旭,陈虓,李立华,赵鹏,赵俊,班雪峰,李红福,龚晓丹,孔金丞,郭建华,李雄军.碲镉汞线性雪崩焦平面器件评价及其应用(特邀)[J].红外与激光工程,2023,52(3):20220698-1-20220698-12.
作者姓名:张应旭  陈虓  李立华  赵鹏  赵俊  班雪峰  李红福  龚晓丹  孔金丞  郭建华  李雄军
作者单位:昆明物理研究所,云南 昆明 650223
摘    要:碲镉汞线性雪崩焦平面探测器具有高增益、高带宽及低过剩噪声等特点,在航空航天、天文观测、军事装备及地质勘探等领域展现了巨大的应用潜力。目前,国内已经开展了碲镉汞线性雪崩焦平面器件的研制工作,但缺乏评价其性能的方法及标准,同时对其的应用仍然处于探索阶段。首先分析了表征线性雪崩焦平面器件性能的关键参数,同时基于碲镉汞线性雪崩焦平面器件的特点,探讨了雪崩焦平面器件在主/被动红外成像、快速红外成像等领域的应用,最后对碲镉汞雪崩焦平面器件的未来发展进行了展望。

关 键 词:碲镉汞  APD  性能评价  主被动双模成像  快速红外成像
收稿时间:2022-11-20

Evaluation and application of HgCdTe linear avalanche focal plane devices (invited)
Affiliation:Kunming Institute of Physics, Kunming 650223, China
Abstract:  Significance   The HgCdTe linear avalanche focal plane detector has the characteristics of high gain, high bandwidth and low excess noise, and has shown great application potential in the field of aerospace, astronomical observation, military equipment and geological exploration. Based on their own HgCdTe infrared FPA detector technology, Leonardo, Raytheon, DRS and Sofradir have developed HgCdTe APD focal plane devices. The demonstration of active gating imaging, active/passive dual-mode imaging and 3D imaging have been completed, showing attractive application prospect of HgCdTe APD. However, the research on HgCdTe APD detector technology is still at the initial stage in China, and its application is still in the exploration stage due to the lack of evaluation method.   Progress   The parameters of the HgCdTe infrared focal plane array cannot completely cover the characterization of HgCdTe APD. According to the characteristics and application requirements of HgCdTe APD, in order to accurately characterize the performance of HgCdTe APD focal plane devices, it is necessary to introduce parameters such as gain, excess noise factor, noise equivalent photon number and time resolution. The gain of the APD is used to measure the amplification ability to the input, which is defined as the ratio of the response of the device with gain to the response without gain. The test method of the gain is given and the gain for an APD FPA prepared by Kunming Institute of Physics is shown (Fig.1, Fig.2). The average gain of the APD FPA has an exponential relationship with the bias. When the bias is ?8 V, the gain of the FPA is 166 and the gain nonuniformity does not exceed 3.4%. The randomness of the carrier multiplication of the APD introduces excess noise, which makes the SNR of the output deteriorate when the input is amplified. Usually, excess noise factor is used to describe the deterioration of SNR, which can be calculated by the ratio of the device output SNR without gain to the device output SNR with gain. It's worth noting that the conditions need to be consistent during the test, otherwise, the change of the bandwidth will cause the test data not to reflect the true excess noise factor level of the device. The result is shown (Fig.1, Fig.3). Similar to noise equivalent temperature difference, noise equivalent photon number (NEPh) is used to evaluate the sensitivity of APD device in active imaging mode, which is mainly determined by the device gain, dark current level, background flux and readout circuit noise. Generally, NEPh refers to the limiting performance of the device, which is generally tested under the non-background limit (the optical current caused by the background flux should be less than the dark current). In the same conditions, the NEPh of APD device in high gain state decreases with the decrease of integration time (Fig.4). Coupling the APD device with the ROIC with timing function, the distance information can be obtained, which can be evaluated by time resolution. The time resolution reflects the minimum time interval of the pulse laser reaching the focal plane which can be distinguished by the APD, representing the minimum distance that can be distinguished. Finally, combined with the application of HgCdTe linear avalanche device and its characteristics, its application in active/passive infrared imaging and fast infrared imaging is discussed in detail, which can be used as a reference for the application of the HgCdTe APD FPA.   Conclusions and Prospects   Firstly, the key parameters that characterize the performance of HgCdTe APD focal plane chip are analyzed. Secondly, based on the characteristics of HgCdTe linear avalanche focal plane devices, the applications of HgCdTe avalanche focal plane devices in active/passive imaging, fast imaging and 3D imaging are discussed. Finally, the future development of HgCdTe avalanche focal plane devices is prospected. With the development of HgCdTe material growth, fabrication of devices, readout circuit design and processing and testing technology, there will be HgCdTe APD focal plane products with better performance, larger area, smaller pixel center distance and higher frame rate, which meet the demands of high-performance detectors in various applications such as 3D imaging, active/passive dual-mode imaging and single-photon detection.
Keywords:
点击此处可从《红外与激光工程》浏览原始摘要信息
点击此处可从《红外与激光工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号