首页 | 官方网站   微博 | 高级检索  
     

城市轨道交通高架钢轨波磨地段振动噪声试验
引用本文:宋立忠,冯青松,孙坤,刘全民,罗云柯.城市轨道交通高架钢轨波磨地段振动噪声试验[J].交通运输工程学报,2021,21(3):159-168.
作者姓名:宋立忠  冯青松  孙坤  刘全民  罗云柯
作者单位:1.华东交通大学 铁路环境振动与噪声教育部工程研究中心,江西 南昌 3300132.中铁第四勘察设计院集团有限公司,湖北 武汉 4300633.香港理工大学国家轨道交通电气化与自动化工程技术研究中心香港分中心,香港 999077
基金项目:国家自然科学基金项目52008169国家自然科学基金项目52068030国家自然科学基金项目51878277
摘    要:为探明城市轨道交通高架钢轨波磨地段振动噪声对沿线环境的影响,以某城市轨道交通高架钢轨波磨地段为研究对象,开展了列车以不同速度通过时的振动与噪声现场测试;基于测试结果分析了车速对城市轨道交通高架振动与噪声的影响,研究了城市轨道交通高架噪声的空间分布特性,解释了城市轨道交通高架钢轨波磨地段振动与噪声峰值产生的原因。研究结果表明:当列车分别以20、40、60、80、100和110 km·h-1的速度通过城市轨道交通高架钢轨波磨地段时,距线路中心线7.5 m、高于轨面1.2 m处的声压时程峰值分别约为0.6、0.9、1.3、1.9、2.3和3.3 Pa;轨面以上区域主要受轮轨噪声的影响,而梁体下方区域则主要受桥梁结构噪声的影响;轮轨噪声与车速之间存在着很强的线性相关性,而桥梁结构噪声与车速之间的线性相关性则略低,车速每增大10 km·h-1,轮轨噪声和桥梁结构噪声分别约增大1.7和1.1 dB;不同车速下城市轨道交通高架噪声随距离的衰减规律基本一致,测点与线路中心线的距离每增大1倍,测得的噪声约减小4.33 dB;钢轨波磨对城市轨道交通高架轮轨噪声的影响较为显著,钢轨波磨的波长决定了列车以不同速度过桥时钢轨振动加速度的峰值频率,进而影响轮轨噪声的峰值频率;城市轨道交通高架结构噪声的峰值频率主要与其自身的振动特性有关,与车速和钢轨波磨的关系并不大。 

关 键 词:城市轨道交通    高架    钢轨波磨    振动噪声    试验
收稿时间:2021-03-14

Test on vibration noise of rail corrugation section on urban rail transit viaduct
SONG Li-zhong,FENG Qing-song,SUN Kun,LIU Quan-min,LUO Yun-ke.Test on vibration noise of rail corrugation section on urban rail transit viaduct[J].Journal of Traffic and Transportation Engineering,2021,21(3):159-168.
Authors:SONG Li-zhong  FENG Qing-song  SUN Kun  LIU Quan-min  LUO Yun-ke
Affiliation:1.Engineering Research Center of Railway Environmental Vibration and Noise of Ministry of Education, East China Jiaotong University, Nanchang 330013, Jiangxi, China2.China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, Hubei, China3.National Rail Transit Electrification and Automation Engineering Technology Research Center (Hong Kong Branch), The Hong Kong Polytechnic University, Hong Kong 999077, China
Abstract:To explore the influences of vibration and noise of rail corrugation sections of urban rail transit viaducts on the environment along railway lines, field tests were carried out on the vibration and noise of a rail corrugation section on an urban rail transit viaduct induced by train passing at different speeds. Based on the field test results, the influences of train speed on the vibration and noise of urban rail transit viaduct were analyzed, and the spatial distribution characteristics of the noise of urban rail transit viaduct were studied. The formations of vibration and noise peaks of rail corrugation section were explained. Research results show that the peak sound pressures 7.5 m away from the central line of track and 1.2 m above the rail surface are about 0.6, 0.9, 1.3, 1.9, 2.3, and 3.3 Pa when the train passes through the rail corrugation section on the urban rail transit viaduct at speed of 20, 40, 60, 80, 100, and 110 km·h-1, respectively. The area above the rail surface is mainly affected by the wheel-rail noise, while the area below the beam is primarily affected by the bridge structure-borne noise. There is a strong linear correlation between the wheel-rail noise and the train speed, whereas the linear correlation between the bridge structure-borne noise and the train speed is slightly lower. When the train speed increases by 10 km·h-1, the wheel-rail noise and the bridge structure-borne noise increase by about 1.7 and 1.1 dB, respectively. The attenuation law of the noise of urban rail transit viaduct with the distance is consistent under different train speeds. The measured noise decreases by about 4.33 dB when the distance between the measuring point and the central line of track is doubled. The effect of rail corrugation on the wheel-rail noise of urban rail transit viaduct is significant. The rail corrugation wavelength determines the peak frequencies of rail vibration accelerations when the train passes over the bridge at different speeds, which in turn affects the peak frequencies of wheel-rail noise. The peak frequency of urban rail transit viaduct structure-borne noise is mainly related to the bridge vibration characteristics, and it has little relation to the train speed and the rail corrugation. 1 tab, 10 figs, 31 refs. 
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号