http: //hjkcxb. alljournals. net doi: 10. 3969/i, issn. 1674 – 0858, 2022, 01. 30

李海强,丁瑞丰,阿克旦•吾外士,刘建,潘洪生,李号宾,王冬梅. 新疆棉区田间棉铃虫种群对 Bt $Cryl\,Ac$ 毒蛋白的敏感性研究 [J]. 环境昆虫学报,2022,44(1): 257 – 262.

新疆棉区田间棉铃虫种群对 Bt Cry1Ac 毒蛋白的敏感性研究

李海强,丁瑞丰,阿克旦·吾外士,刘 建,潘洪生,李号宾,王冬梅^{*}

(新疆农业科学院植物保护研究所,农业部库尔勒作物有害生物科学观测实验站,

农业部西北荒漠绿洲作物有害生物综合治理重点实验室,乌鲁木齐830091)

摘要: 为了明确新疆棉区棉铃虫 $Helicoverpa\ armigera\ (Hibner)$ 种群对 $Bt\ Cry1Ac$ 毒蛋白的敏感性变化,本次研究采用单雌系 F_1/F_2 代诊断剂量法于 2013-2019 年连续监测了新疆库尔勒市棉铃虫种群对 Cry1Ac 毒蛋白的抗性频率以及种群敏感度的变化。结果表明,2013-2019 年新疆库尔勒市棉铃虫种群相对平均发育级别分别为 0.328、0.386、0.539、0.572、0.565、0.542 和 0.562。棉铃虫种群的相对平均发育级别呈逐年升高的趋势,表明棉铃虫对 Cry1Ac 毒蛋白的敏感度降低,但尚未发现相对发育级别>0.8 的个体,库尔勒市棉铃虫种群对转 Cry1Ac 基因棉花仍处于较为敏感阶段。单一大面积种植转 Cry1Ac 基因棉花可能是库尔勒地区其抗性发展的重要原因。因此,后续还需要继续加强对库尔勒棉铃虫种群的抗性监测。

关键词: 棉铃虫; Bt 蛋白; 抗性频率; 抗性监测

中图分类号: Q965; S89 文献标识码: A 文章编号: 1674-0858 (2022) 01-0257-06

Frequency of Bt resistant alleles in wild cotton bollworm populations in Xinjiang

LI Hai-Qiang , DING Rui-Feng , Ahtam Uwayis , LIU Jian , PAN Hong-Sheng , LI Hao-Bin , WANG Dong-Mei* (Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis , Ministry of Agriculture P. R. China / Scientific Observing Experimental Station of Crop Pest in Korla , Ministry of Agriculture P. R. China / The Institute of Plant Protection , Xinjiang Academy of Agricultural Sciences , Urumqi 830091 , China)

Abstract: The purpose of this study was to assay the sensitivity variation of $Helicoverpa\ armigera\$ (Hübner) (Lepidoptera: Noctuidae) to the Cryl Ac toxin in the Korla cotton growing region , Xinjiang Province. The frequency of alleles conferring resistance to Cryl Ac toxin and the relative average development rates of H. armigera collected in Korla were assessed from 2013 – 2019 using the F_1 and F_2 offspring , iso-female lines , combined discrimination dose method. From 2013 – 2019 , the mean relative average development rates (RADRs) of H. armigera larvae in the Korla population were 0. 328 , 0. 386 , 0. 539 , 0. 572 , 0. 565 , 0. 542 and 0. 562 , respectively. These results showed that there was an increase in the RADR of H. armigera during 2013 – 2019 in the Korla populations , suggesting that resistance to Cryl Ac has increased in H. armigera populations in Korla. The cotton bollworm population in Korla was

基金项目: 国家转基因生物新品种培育重大专项(2016ZX08012-004); 国家自然科学基金(31460475)

作者简介: 李海强,男,博士,副研究员,研究方向为棉花害虫综合治理,E-mail: jacky81611@163.com

^{*} 通讯作者 Author for correspondence: 王冬梅,硕士,研究员,研究方向为棉花害虫综合治理,E – mail: wdm872@ sina. com

收稿日期 Received: 2020 - 11 - 16; 接受日期 Accepted: 2021 - 05 - 20

still sensitive to Cry1Ac gene in cotton. Bt transgenic cotton planted in a single large area may be an important reason for the development of resistance in Korla region. Therefore, it is necessary to strengthen the resistance monitoring of cotton bollworm.

Key words: Helicoverpa armigera; Bt Cryl Ac; resistance allele frequency; resistance monitoring

棉铃虫 Helicoverpa armigera 是危害棉花的一种 重大的致灾性害虫。20世纪90年代曾在我国连年 暴发几乎对所有化学农药产生抗性 (吴孔明, 2005)。苏云金杆菌 Bacillus thurigensis (Bt) 产生 的 δ-内毒素对许多鳞翅目害虫具有很高的杀虫活 性,而对天敌和人畜很安全。自1997年转苏云金 芽孢杆菌 (Bt) 基因棉花在我国首次商业化栽培 以来,较好地控制了棉铃虫的为害,为棉铃虫的 防控提供了一种安全有效的策略(张洋,2010)。 然而,长期大面积推广和种植,棉铃虫在整个生 长期都受到了 Bt 棉体内持续表达的 Bt 杀虫蛋白的 高压选择,棉铃虫将会对 Bt 棉演化出抗性(叶 萱, 2004)。Kranthi (2006) 报道从Bt 棉花上采集 棉铃虫种群后用 Bt 棉花叶片饲养 1 代, 随后直接 用含 Bt Cryl Ac 的饲料筛选了 11 代后发现,棉铃 虫对 Bt Cry1Ac 的抗性达到 205 倍。虽然目前已有 多种害虫检测到对蛋白产生了不同程度的抗性, 但是至今为止,并没有发现因为害虫抗性的产生 而导致转基因作物种植失败的情况,但是抗性演 变问题不可忽视。因此,有必要进行棉铃虫对 Bt 的抗性监测,为棉铃虫的综合治理提供理论依据 (Luttrell, 2012; Kennedy, 2017; Kukanur, 2018) 。

棉铃虫对 Bt 毒蛋白抗性监测是一种有效的方 法,其目的和意义在于明确 Bt 棉花是否仍然可以 在新疆继续种植,并持续地压低棉铃虫的种群数 量 (Burd, 2003; Wu, 2007)。先前的学者已进行 了大量的研究。2009-2013年,在长江流域棉区 通过不含 Bt 毒素的人工饲料和含有 1.0 mol/L Cry1A(c) 毒素的饲料,共筛选了夏津2837个棉 铃虫家系和安次 2 055 个家系的生长速率,没有发 现对 Bt CrylA(c) 有抗性的棉铃虫个体(An, 2015)。2010-2011年利用相同的方法,研究了新 疆棉铃虫对 Bt 棉的抗性频率进行了监测,结果表 明新疆地区棉铃虫田间种群的抗性频率仍处于敏 感水平(王冬梅,2012)。张洋等(2010)利用改 进的单雌系 F1/F2代法,对黄河流域主要棉区河南 安阳县、河北威县、山东武城县的棉铃虫种群进 行了系统监测,结果表明,我国黄河流域这3个 主要棉区田间棉铃虫种群对 Cry1Ac 毒素还没有产 生明显的抗性,抗性基因频率仍处于正常水平。李国平等(2018)对河南省新乡市棉铃虫种群进行了 Bt 抗性频率监测,结果表明新乡市棉铃虫种群对 Cryl Ac 蛋白的敏感度增加,转 *Cryl Ac* 基因棉花仍处于较为敏感阶段。

新疆棉区是我国重要的棉花生产基地,近些年随着转基因棉花的引进和大面积种植,其对棉铃虫产生的抗性也备受关注。同时,棉铃虫对 Bt Cryl Ac 棉的敏感性的监测工作仍然开展较少。因此,有必要对新疆棉区棉铃虫对 Cryl Ac 毒素抗性进行系统的监测。本文采用单雌系 F₁/F₂代诊断剂量法于 2013 - 2019 年连续监测了新疆库尔勒市棉铃虫种群对 Cryl Ac 蛋白的抗性频率以及种群敏感度的变化。通过这些研究,可以明确上述地区棉铃虫种群对 Cryl Ac 的敏感程度,以及其抗性的演化过程,为制定切实可行的棉铃虫抗性治理措施提供参考,以保障转基因棉花在新疆有效、持久安全的利用。

1 材料与方法

1.1 供试虫源

新疆库尔勒地区是新疆 Bt 棉花集中种植区之一。2013 - 2019 年 7 月在新疆库尔勒地区利用 1 000 W 诱虫灯诱集 2 代棉铃虫成虫,总计 446 个棉铃虫单雌系作为供试虫源,用于棉铃虫种群对 Cry1Ac 抗性频率的监测。

1.2 供试 Bt Cry1Ac 蛋白

含 Cry1Ac 型 Bt ICP 20% 的 MVPII 水剂,由 Mycogen 公司提供,冻存于 - 20℃冰箱备用。

1.3 实验方法

采用 F_1/F_2 单雌系法: 以 Wu (1999) 确定的 1.0 $\mu g/mL$ 饲料为诊断浓度,并参照 Burd (2003) 的生物测定方法。在库尔勒试验基地诱集棉铃虫雌蛾,以 10% 蜂蜜水饲养在一次性水杯中,单头饲养后将每个雌蛾所产初孵幼虫 $30\sim35$ 头接入 1.0 $\mu g/mL$ 的 Cryl Ac 饲料中,以不加 Cryl Ac 的人工饲料作为对照,在温度 $27\pm2\%$,相对湿度 $60\%\sim70\%$,光周期 14 L:10 D 下饲养,6 d 后观

察幼虫发育级别,统计幼虫的发育级别。

 F_1 代幼虫在 Cry1 Ac 饲料上发育与在正常饲料上发育较相近的按 10% 的比例,将各个家系在正常饲料上存活幼虫分别保存下来,使其羽化,置于养虫笼中自交,进行 F_2 代幼虫生物测定,方法同 F_1 代幼虫生物测定。

1.4 数据处理

根据生物测定结果,计算每个家系幼虫在两种饲料上的相对平均发育级别,为消除环境条件的影响,相对平均发育级别为在 Cryl Ac 饲料上的平均发育级别除以在正常饲料上的平均发育级别。试验数据处理均采用 SPSS 17.0 数据处理系统进行分析。对不同年份的相对发育级别进行单因素方差分析,相同小写字母表示差异不显著,不同小写字母表示差异显著。

 F_2 代与 F_2 代对应的 F_1 代的相对平均发育级别利用单因素方差分析其差异显著性 , F_2 代与 F_2 代 对应的 F_1 代的相对平均发育级别相关性分析采用 SPSS 17.0 数据处理系统进行分析。

2 结果与分析

2.1 F1 代棉铃虫种群的敏感性

2013-2019 年库尔勒棉铃虫种群各家系在 Cry1Ac 上的相对平均发育级别(RADR) 分布见图 $1 \circ F_1$ 代棉铃虫中均未观察到 RADR 大于 0.8 的个体,RADR 在 $0.3 \sim 0.6$ 之间。

2013-2019 年共测试库尔勒种群分别为60 个、38 个、48 个、53 个、59 个、83 个和 105 个雌性家系。F1 代棉铃虫种群的 RADRs 分别为 0.328、0.386、0.539、0.572、0.565、0.542、0.562。RADR 从 2015 年开始明显的升高(见图 1),在 2016 年达到峰值 0.572,然后逐渐下降到 2019 年的 0.562,方差分析表明,2015-2019 年棉铃虫的相对发育级别显著高于 2013 年和 2014 年 (F(6439)=44.39; P<0.0001)。表明,棉铃虫种群对 Cry1Ac 的 RADR 升高,抗性增加。

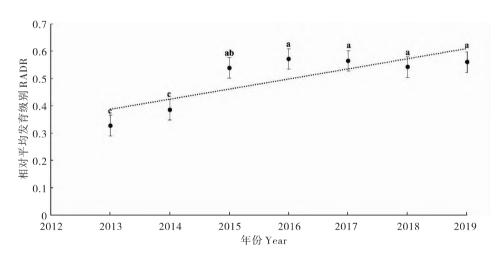


图 1 不同年份 F₁代库尔勒棉铃虫种群相对发育级别

Fig. 1 RADR dynamics for each year in the F_1 generation in the Korla populations during 2013 – 2019 注: 图中不同小写字母 a , b 代表在 0.05 水平差异显著 , 下同。Note: Different small letters in the figure were significantly at 0.05 level , the same as below.

2.2 F₁代棉铃虫种群相对平均发育级别分布频次

2013-2014 年棉铃虫 F_1 代幼虫相对平均发育级别主要分布在 $0.2 \sim 0.5$ 之间,2015 年略有增加,其中相对平均发育级别为 0.6 的所占比例最高。至 2016-2019 年则主要分布在 $0.3 \sim 0.7$ 之间,且相对发育级别为 0.7 的个体比例较 2016 年以前逐渐增加(图 2)。

2.3 F2 代棉铃虫种群的敏感性

2013-2019 年进行了 F_2 棉铃虫种群的 Bt Cry1Ac 毒素的抗性的生物测定。结果表明, F_2 代棉铃虫种群相对平均发育级别为 $0.419\sim0.621$,与其对应的 F_1 代棉铃虫种群相比,除了 2013 年和 2019 年有明显差异,其余年份无差异(见表 1)。在供试的 F_2 代家系中,没有任何 1 个家系的相对平均发育级别达到 0.8。

相关性分析表明, F_2 代与 F_2 代对应的 F_1 代的相对平均发育级别间无明显相关性(R=0.229,

P=0.084),表明 F_2 代棉铃虫种群的变化没有遗传。

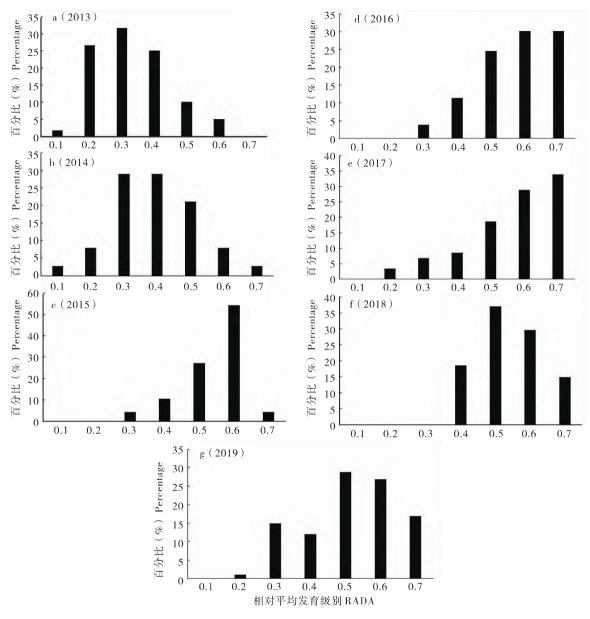


图 2 棉铃虫 F1代幼虫相对平均发育级别分布图

Fig. 2 RADR distribution for six – day – old larvae of $Helicoverpa~armigera~F_1$ generation female lines on Cry1Ac diets in the Korla population during 2013-2019

表 1 库尔勒棉铃虫种群 F₁和 F₂代幼虫的相对平均发育级别

Table 1 Relative average development ratings for larvae of $Helicoverpa\ armigera\ F_1$ and F_2 generation female lines in Korla population

年份 Year	相对平均发育级别 Relative average development rating per line		E	10	p
	F ₁ 代生物测定 F ₁ generation	F ₂ 代生物测定 F ₂ generation	ľ	df	Ρ
2013	0.556 ± 0.013 a	0.419 ± 0.016 b	6. 58	3	0.007
2014	0.626 ± 0.061 a	0.589 ± 0.052 a	4. 97	1	0. 126
2015	0.570 ± 0.026 a	0.574 ± 0.028 a	0. 10	12	0.922

续表 1 Continued table 1

年份 Year	相对平均发育级别 Relative average development rating per line		· F	df	P
	F ₁ 代生物测定 F ₁ generation	F ₂ 代生物测定 F ₂ generation	Г	uI	r
2016	0.628 ± 0.050 a	0.603 ± 0.041 a	1. 18	3	0. 321
2017	0.637 ± 0.017 a	0.621 ± 0.035 a	0. 54	14	0. 599
2018	0.632 ± 0.019 a	0.617 ± 0.046 a	1. 49	7	0. 178
2019	0.674 ± 0.018 a	$0.585 \pm 0.0279 \text{ b}$	2. 56	11	0. 026

3 结论与讨论

本文利用单雌系 F_1/F_2 代诊断法从 2013 - 2019 年连续对新疆库尔勒棉区棉铃虫种群对 Cry1Ac 蛋白的抗性频率进行了监测。结果发现库尔勒 F_1 代和 F_2 代棉铃虫均未发现相对平均发育级别大于 0.8 的个体,说明没有出现耐 Cry1Ac 蛋白的棉铃虫个体。这表明库尔勒地区棉铃虫种群仍处于敏感水平,抗性水平较低。Li et al. (2010 年) 在2005 年、2006 年和 2009 年对新疆库尔勒棉铃虫对 Cry1Ac 进行了抗性频率监测,结果表明, F_1 代的相对平均发育级别分别为 0.31 , 0.32 和 0.49 ,棉铃虫种群仍处于敏感水平。Zhang et al. (2018) 发现新疆棉铃虫对 Cry1Ac 的敏感性高于黄河流域和长江流域棉区。这些结果表明,新疆南疆地区棉铃虫种群的抗性频率较低,仍然处于对 Cry1Ac 蛋白敏感的阶段,这与本研究结果一致。

棉铃虫对 Bt 抗性是否形成取决于多种因素,如不同棉铃虫地理种群的密度、时空分布、Bt 基因漂移等(Wu,2007)。Liu et al. (2008) 报道,2003 年至 2007 年,在河北省邱县对棉铃虫抗性频率进行了抗性监测,结果表明,田间棉铃虫种群较实验室棉铃虫种群 Cry1Ac 产生抗性的等位基因的频率增加了 12 倍,密集种植含 Bt Cry1Ac 蛋白的棉花引起了棉铃虫抗性的增加(何丹军和刘凤沂等,2001; Xu et al.,2009)。这可能是由于河北邱县自 2001 年以来 Bt 基因棉占总作物种植面积的85%以上造成的(潘利东等,2013)。

棉花是新疆南部、北部和东部地区的主要作物,是农民的主要收入来源。然而,由于近年来作物结构的调整,棉花种植面积在减少,而其它经济作物种植面积在扩大。在莎车、阿克苏、哈密、伯乐、昌吉等地形成了多种农作物种植模式,各地棉花种植比重不断下降。多种作物的分布为

棉铃虫提供了丰富的食物来源,还可以提供庇护所,进而减缓棉铃虫对 Bt 蛋白抗药性的发展速度 (Wan P, 2012; Wang, 2018)。因此,天然避难所在棉铃虫的抗性管理中起着非常重要的作用(Jin $et\ al.\ ,2015$; Takahashi $et\ al.\ ,2016$)。

转 CrylAc 基因棉对棉铃虫存在明显控制效果,目前种植转基因棉大多数为转单价基因品种,因此棉铃虫对转基因棉比对常规棉田化学农药更易产生抗性。一旦棉铃虫对转基因棉产生抗性,转基因抗虫棉就会失去价值。新疆库尔勒地区当地主要以种植棉花为主,棉花栽培面积较大,且连年种植很有可能导致棉铃虫对 Bt 蛋白的敏感性下降。因此,为了确保 Bt 棉花能够在新疆可持续安全种植仍需继续监测棉铃虫对 Bt 棉花的抗性变化,为棉铃虫的综合治理提供理论依据。

参考文献 (References)

An JJ, Gao YL, Lei CL, et al. Monitoring cotton bollworm resistance to Cryl Ac in two counties of northern China during 2009 – 2013 [J]. Pest Management Science, 2015, 71 (3): 377–382.

Burd AD, Gould F, Bradley JR, et al. Estimated frequency of nonrecessive Bt resistance genes in bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in Eastern North Carolina [J]. Journal of Economic Entomology, 2003, 96 (1): 137 – 142.

Daisuke T , Takehiko Y , Masaaki S , et al. Is a larger refuge always better? Dispersal and dose in pesticide resistance evolution [J]. Evolution , 2016 , 71 (6): 1494 – 1503.

He DJ, Shen JL, Zhou WJ, et al. Using F₂ genetic method of isofemale lines to detect the frequency of resistance alleles to Bacillus thuringiensis toxin from transgenic Bt cotton in cotton bollworm (Lepidoptera: Noctuidae) [J]. Cotton Science, 2001, 13 (2): 105-108. [何丹军,沈晋良,周威君,等.应用单雌系F₂代法检测棉铃虫对转Bt基因棉抗性等位基因的频率[J].棉花学报,2001,13 (2): 105-108]

Jin L , Zhang HN , Lu YH , et al. Large – scale test of the natural refuge strategy for delaying insect resistance to transgenic Bt crops [J]. Nature Biotechnology , 2015 , 33 (2): 169 – 174.

Kennedy N , Kirti S , Gujar GT. Frequency of alleles conferring resistance to Cryl Ac toxin of *Bacillus thuringiensis* in population of *Helicoverpa*

- armigera (Hübner) (Lepidoptera: Noctuidae) from India [J]. Indian Journal of Experiment Biology, 2017, 55 (10): 728 733.
- Kukanura VS, Singha TVK, Kranthi KR, et al. CrylAc resistance allele frequency in field populations of Helicoverpa armigera (Hübner) collected in Telangana and Andhra Pradesh, India [J]. Crop Protection, 2018, 107: 34 – 40.
- Kranthi KR, Dhawad CS, Naidu SR, et al. Inheritance of resistance in Indian Helicoverpa armigera (Hübner) to CrylAc toxin of Bacillus thuringiensis [J]. Crop Protection, 2006, 25: 119-124.
- Li GP, Gao LN, Huang JR, et al. Frequency of Bt resistant alleles in wild cotton bollworm populations [J]. Chinese Journal of Applied Entomology, 2018, 55 (1): 49 54. [李国平,高丽娜,黄建荣,等.田间棉铃虫种群对 Cryl Ac 蛋白的抗性基因频率 [J]. 应用昆虫学报, 2018, 55 (1): 49 54]
- Li GP , Feng HQ , Gao YL , et al. Frequency of Bt resistance alleles in Helicoverpa armigera in the Xinjiang cotton-planting region of China [J]. Environmental Entomology , 2010 , 39 (5): 1698 – 1704.
- LiuFY, Zhu YC, Shen JL. Monitoring resistance to transgenic Bt cotton in field populations of *Helicoverpa armigera* (Hübner) (Lepidoptera: Noctuidae) with F₁ screening method [J]. *Acta Entomologica Sinica*, 2008, 51 (9): 938 945. [刘凤沂,朱玉成,沈晋良. F1 代法监测田间棉铃虫对转 *Bt* 基因棉的抗性[J]. 昆虫学报, 2008, 51 (9): 938 945]
- Luttrell RG, and Jackson RE. *Helicoverpa zea* and Bt cotton in the United States [J]. *GM Crops Food*, 2012, 3 (3): 213-227.
- Pan LD, Shi M, Zhang K, et al. Analysis of frequency of resistance allele to transgenic Bt cotton in field populations of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) with F₁ screening method [J]. Cotton Science, 2013, 25 (3): 240 246. [潘利东,施明,张凯,等.F₁代法检测棉铃虫种群对 Bt 棉的抗性等位基因频率变化 [J]. 棉花学报, 2013, 25 (3): 240 246]
- Wang DM, Li HQ, Ding RF, et al. Frequency of resistance to Bacillus thuringiensis toxin CrylAc in Xinjiang field population of Helicoverpa

- armigera [J]. Journal of Plant Protection, 2012, 39 (6): 518 522. [王冬梅,李海强,丁瑞丰,等. 新疆地区棉铃虫自然种群对 Bt 棉的抗性频率监测 [J]. 植物保护学报, 2012, 39 (6): 518 522]
- Wang PP, Ma JH, Graham PH, et al. Susceptibility of Helicoverpa armigera to two Bt toxins, CrylAc and Cry2Ab, in northwestern China: Toward developing an IRM strategy [J]. Journal of Pest Science, 2019, 92: 923-931.
- Wan P , Huang YX , Wu HH , et al. Increased frequency of pink bollworm resistance to Bt toxin Cryl Ac in China [J]. Crop Protection , 2018 , 107: 34 40.
- Wu KM, Guo YY. The evolution of cotton pest management practices in China [J]. Annual Review of Entomology, 2005, 50: 31-52.
- Wu KM. Monitoring and management strategy for *Helicoverpa armigera* resistance to Bt cotton in China [J]. *Journal of Invertebrate Pathology*, 2007, 95 (3): 1-223.
- Xu ZP, Liu FY, Chen J, et al. Using an F₂ screen to monitor frequency of resistance alleles to Bt cotton in field populations of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) [J]. Pest Management Science, 2009, 65 (4): 391 397.
- Ye X. Insect resistance to Bt crops [J]. World Pesticides, 2004, 6(2): 33-37. [叶萱. 昆虫对 Bt 作物的抗性 [J]. 世界农药, 2004, 6(2): 33-37]
- Zhang Y, Zhang S, Cui JJ. Frequency of Bt resistance alleles in Helicoverpa armigera populations from the Yellow River cotton—farming region of China [J]. Cotton Science, 2010, 22 (4): 297-303. [张洋,张帅,崔金杰. 黄河流域田间棉铃虫对转 Bt 基因棉抗性监测 [J]. 棉花学报, 2010, 22 (4): 297-303]
- Zhang DD, Xiao YT, Chen WB, et al. Field monitoring of Helicoverpa armigera (Lepidoptera: Noctuidae) Cryl Ac insecticidal protein resistance in China (2005 2017) [J]. Pest Management Science, 2018, 75 (3). Doi: 10.1002/ps.5175.