首页 | 官方网站   微博 | 高级检索  
     


Homogeneous transport in a heterogeneous membrane: water diffusion across human stratum corneum in vivo.
Authors:Y N Kalia  F Pirot  and R H Guy
Affiliation:Department of Biopharmaceutical Sciences, University of California-San Francisco 94143-0446, USA.
Abstract:The objective of this study was to determine whether a structurally heterogeneous biomembrane, human stratum corneum (SC), behaved as a homogeneous barrier to water transport. The question is relevant because the principal function of the SC in vivo is to provide a barrier to the insensible loss of tissue water across the skin. Impedance spectra (IS) of the skin and measurements of the rate of transepidermal water loss (TEWL) were recorded sequentially in vivo in human subjects as layers of the SC were progressively removed by the serial application of adhesive tape strips. The low-frequency (< or = 100 rad s-1) impedance of skin was much more significantly affected by tape stripping than the higher frequency values; removal of the outermost SC layer had the largest effect. In contrast, TEWL changed little as the outer SC layers were stripped off, but increased dramatically when 6-8 microns of the tissue had been removed. It follows that the two noninvasive techniques probe SC barrier integrity in somewhat different ways. After SC removal, recovery of barrier function, as assessed by increasing values of the low-frequency impedance, apparently proceeded faster than TEWL decreased to the prestripping control. The variation of TEWL as a function of SC removal behaved in a manner entirely consistent with a homogeneous barrier, thereby permitting the apparent SC diffusivity of water to be found. Skin impedance (low frequency) was correlated with the relative concentration of water within the SC, thus providing an in vivo probe for skin hydration. Finally, the SC permeability coefficient to water, as a function of SC thickness, was calculated and correlated with the corresponding values of skin admittance derived from IS.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号