冀北大草坪钼矿地质特征及成因探讨

郭 忠,肖成东,王自力

(天津华北地质勘查局, 天津 300170)

摘 要: 大草坪钼矿位于冀北上黄旗构造岩浆岩带钼多金属成矿带中, 赋矿围岩为花岗岩及花 岗闪长岩, 成矿时代为燕山期, 成矿作用受燕山造山带的控制。研究表明, 其成矿物质来源具多源 性、多成因、多期次叠加的特征。包裹体液相成分分析显示成矿热液以大气降水为主, 包裹体均一 化温度为 100~360 °C, 主要在 180~220 °C范围内; Si, S 同位素数据显示成矿流体来源于深部, 并 与侵入岩体同源, 说明大草坪钼矿床属与燕山期岩浆作用有关的中低温热液矿床。

关键词: 大草坪钼矿;地质特征;矿床成因;河北省

中图分类号: P613; P618.65 文献标识码: A 文章编号: 100+1412(2011)0-0028-06

0 引言

大草坪钼矿位于华北地台北缘,北邻撒岱沟门 大型斑岩型钼矿床。1979—1981年,天津华北地质 勘查局 514 地质大队发现该矿后,相继对大草坪钼 矿进行了地质、物化探普查,发现了多处物化探异 常,通过钻孔验证,初步确定矿化分布、强度和规模, 为进一步的勘查工作奠定了基础。

1 矿区地质概况

大草坪钼矿床位于华北地台北缘内蒙地轴中围 场拱断束南部的上黄旗岩浆隆起带内,区内构造、岩 浆活动频繁而强烈,活动形式多样,为本区成矿提供 了必要的热源、动力源和成矿空间。

1.1 地层

大草坪钼矿区内地层不发育,只是沿沟谷和河床 阶地分布有第四系洪冲积层、坡积层,在矿区以北的 断陷盆地内有中生界中酸性火山熔岩和火山碎屑岩。 1.2 构造

区内构造以断裂为主,有 NW 向、近 SN 向和 NE 向 3 组。NW 向断裂最为发育,规模大小不一, 对成矿具有控制作用。汤河断裂是本区最大的断裂 构造(由遥感解译和物探成果得出),走向为 300°,延 长 10 余 km,具有多次活动特征:早期活动派生出一 系列 NW 向次级断裂和裂隙,成为脉岩和含钼石英 脉的主要定位空间,含矿石英单脉大体呈等间距分 布,倾向相反;晚期活动出现在第四纪,表现为河床 的不断下降并向南偏移,河床两侧的阶地呈差异性 上升(河床两侧阶地残留的河床砾石可佐证)。在含 钼石英单脉附近的围岩中,一些节理、裂隙被铁硅质 充填形成稀疏的微细网脉状矿化。

成矿后的断裂规模不大,断距有限,多属平移正 断层。

1.3 岩浆岩

矿区岩浆岩发育,主要有石英闪长岩、花岗闪长 岩、花岗岩、花岗斑岩、石英正长斑岩、流纹岩、细晶 岩、煌斑岩等。

石英闪长岩与花岗闪长岩为同期异相的产物。 石英闪长岩多分布于岩体边部,石英、酸性斜长石相 对较少;花岗闪长岩位于岩体中部,浅色矿物相对较 多,岩石以中性斜长石为主,其次为酸性斜长石、石 英、黑云母、角闪石等。该类岩石分布于矿区中部, 属燕山期岩体,是本区钼矿化的主要围岩。

花岗岩是印支期南猴顶岩体的一部分,大面积 分布于矿区西部,呈正地形地貌特征。接触带附近 石英脉较发育,并见有钼矿化。该岩体和本区的钼

收稿日期: 2010-12-02

作者简介: 郭忠(1975), 男, 河北元氏人, 工程师, 学士, 2001 年毕业于中国地质大学(武汉) 地质矿产勘查专业, 从事地质找矿研究工作。 通信地址: 天津市河东区广瑞西路 67 号, 天津华北地质勘查总院: 邮政编码: 300170; E-mail: guozhong21@126. com

矿化有一定渊源。

1.4 围岩蚀变

矿区内自北向南有4条沿 320°~ 330°方向平行 展布或沿接触带呈弧形分布的蚀变带,其中↓号、Ⅱ 号和 11号蚀变带位于汤河以北, 1V号蚀变带位于汤 河以南(图1), 蚀变类型有高岭土化、钾长石化、绢 云母化和硅化等,其中钾化、硅化和绢云母化与钼矿 化的关系密切。地表及浅部围岩蚀变常沿裂隙分 布, 蚀变幅度窄, 一般在裂隙两侧 20~30 cm 的范围 内。钻孔中(如ZK83-1)的钾化、硅化蚀变具有呈面 型分布的特点^{① ③}。

1.5 钼矿化

矿床共圈出钼矿体 11 条,主要赋存于Ⅰ号、Ⅱ 号蚀变带内, 矿体产状 190°~ 230° ∠40°~ 60°, 以 II 号蚀变带内的矿体为主,目前已控制主要矿体长 450 m. 延深超过 250 m: 矿石矿物主要为黄铁矿、辉 钼矿等,脉石矿物为石英、长石、黑云母、角闪石等。

2 含钼花岗岩类特征

本区含矿围岩主要为花岗岩和花岗闪长岩体. 二者呈侵入接触关系。

花岗岩风化面呈灰白色,新鲜面呈灰白色-肉 红色, 变余细中粒花岗结构、似斑状结构, 块状构造。

83

主要由钾长石、斜长石、石英及 少量黑云母组成. 钾长石 45% ~ 50%;斜长石 25%~ 30%;石 英20%~25%,黑云母<5%; 副矿物有锆石、磷灰石、磁铁 矿、榍石。粒径以 2~5 mm 者 居多.<2 mm 者次之。钾长石 为微纹长石,呈他形-半自形 宽板状.具高岭土化:斜长石呈 半自形板状,具高岭土化、绢云 母化,局部可见双晶,与钾长石 接触边可见交代净边结构,少 量已重结晶呈细粒镶嵌状变晶 集合体:石英呈他形、齿形粒状 集合体、粒内具波状消光、亚颗 粒;黑云母呈褐色片状,有的被 绿泥石、白云母取代,局部见钾 长石、斜长石已重结晶,呈细粒 镶嵌状变晶集合体。

色- 黄褐色, 新鲜面呈灰白色- 浅肉红色, 似斑状结 构,块状构造,斑晶主要由钾长石和少量斜长石组 成,基质为长石、石英、角闪石、黑云母等。斜长石 30%~ 60%, 钾长石 15%~ 35%, 石英 25%~ 20%, 黑云母< 5%。粒径以< 2 mm 者为主, 2~ 2.5 mm 者较少。斜长石呈半自形板状,具绢云母化,高岭十 化,见双晶,具环带构造,有的斜长石包于钾长石内; 钾长石为条纹长石,呈他形-半自形宽板状,具高岭 土化;石英呈他形粒状,具波状消光、亚颗粒;黑云母 呈褐色片状,局部绿泥石化;角闪石呈绿色柱状,局 部被黑云母交代。岩石中见钾长石和少量斜长石斑 晶、呈半自形- 自形板状, 钾长石为微纹长石, 具高 岭土化、局部碳酸盐化:斜长石具较强绢云母化和碳 酸盐化。副矿物有磷灰石、锆石、磁铁矿、榍石。

花岗岩和花岗闪长岩的岩石化学和稀土元素的 组成及特征值列于表 1、表 2. 含矿围岩在岩石化学 和稀土元素地球化学方面存在如下特点:

(1)花岗岩的 $w(SiO_2) = 71.42\% \sim 73.23\%$,平 均 72.49%; w(K2O+Na2O) = 8.03% ~ 8.37%, 平 均 8. 13%: N az O/K2 O= 0. 87~ 1. 03. 平均 0. 95。 过碱指数(AKI)为 0.60~0.63,平均 0.61;碱度率 (A.R.)为3.38~3.75,平均3.59;分异指数(DI)为 87.92~91.40, 平均 90.26。

Q 1

2

5. 花岗岩 6. 石英脉 7. 蚀变带编号 8. 不整合界线 9. 钻孔

花岗闪长岩风化面呈灰白

表1 大草坪钼矿岩浆岩的岩石化学组成及特征值

Table 1 Major element compositions of the igneous rocks in the Dacaoping Molybdenum deposit

			花岗岩			花岗闪长岩					
石口石称	B2	B4	B6	B8	B10	ZK1901-205	ZK1901-310	PD1-1	B2006-2	PD 1-2	ZK1901-91
SiO ₂	72.86	73.23	72.74	71.42	72.2	65.56	67.35	67.28	68.5	68.26	68.21
TiO ₂	0.13	0.13	0.13	0.18	0.14	0.44	0.4	0.43	0.37	0.43	0.44
Al_2O_3	13.4	13	13.46	13.38	13.04	15.2	14.02	13.78	13.67	15.03	15.8
Fe_2O_3	1.14	0.91	0.79	0.84	0.91	1.02	1.51	1.27	2.26	1.2	1.54
FeO	0.92	0.7	1.03	1.57	0.92	3.63	3.09	1.68	1.82	1.49	1.8
MgO	0.4	0.47	0.41	0.57	0.45	1.17	1.23	1.23	0.91	1.18	1.19
CaO	1.04	1.07	0.99	1.39	1.39	1.96	2.31	2.37	2.32	2.15	2.69
Na_2O	3.99	3.91	3.89	3.89	4.1	3.37	3.38	3.58	3.8	3.67	4.29
$K_2 O$	4.04	4.22	4.48	4.14	3.99	5.3	4.27	4.27	3.74	4.6	3.72
$P_2 O_5$	0.096	0.046	0.033	0.043	0.034	0.14	0.13	0.16	0.12	0.16	0.18
CO_2	0.2	0.042	0.028	0.11	0.028	0.34	0.31	0.42	0.028	0.5	0.11
烧失量	1.44	1.3	1.1	1.36	1.56	1.76	1.48	2.78	1.86	2.16	0.55
总计	99.66	99.03	99.08	98.89	98.76	99.89	99.48	99.25	99.40	100.83	100. 52
AKI	0.60	0.63	0.62	0.60	0.62	0.57	0.55	0.57	0.55	0.55	0.51
K_2O+Na_2O	8.03	8.13	8.37	8.03	8.09	8.67	7.65	7.85	7.54	8.27	8.01
Na_2O/K_2O	0.99	0.93	0.87	0.94	1.03	0.64	0.79	0.84	1.02	0.80	1.15
A.R.	3.51	3.74	3.75	3.38	3.55	3.04	2.76	2.89	2.79	2.86	2.53
Q	31.94	32.03	30.47	29.09	30.33	18.11	23.71	24.28	26.53	23.19	21.35
С	0.79	0.16	0.49	0.07		0.67				0.46	0.21
Or	24.31	25.52	27.02	25.08	24.26	31.92	25.75	26.16	22.66	27.55	21.99
Ab	34.37	33.85	33. 59	33.75	35.69	29.06	29.18	31.40	32.97	31.47	36.31
An	4.68	5.15	4.81	6.81	5.55	9.07	10.69	9.25	9.43	9.86	12.29
M t	1.68	1.33	1.17	1.25	1.36	1.51	2.23	1.91	3.17	1.76	2.23
DI	90.62	91.40	91.08	87.92	90.28	79.08	78.63	81.83	82.16	82.21	79.65

测试单位:华北有色地质勘查局燕郊中心实验室;量的单位: w ᢧ/%。

表 2 大草坪钼矿岩浆岩和含矿石英脉的稀土元素组成及主要特征值

Table 2 The REE contents and characteristic values of rocks and ore

from the Dacaoping	Molybdenum	deposit,	Hebei Province
--------------------	------------	----------	----------------

岩石名称	花岗岩					花岗闪长岩					含矿石英脉		
样号	B2	B4	B6	B8	B10	ZK 1901-205	ZK 1901-310	PD 1	B2006-2	PD1-1	ZK 1901-91	PD 1-1	PD 1
La	18.5	22.1	18.4	23.6	22.9	34.4	36.7	36	35.5	36.5	36.5	3.79	5.89
Ce	35.2	40.8	34.2	43.3	41.3	60.9	65	63.9	69.7	68.5	66.7	7.26	10.2
Pr	3.69	4.37	3.81	4.8	4.59	6.32	6.73	6.71	7.18	7.1	6.7	0.76	1.1
Nd	13.1	15.3	13.6	16.7	16.1	22.1	23	22.7	24.1	24.4	23.1	2.66	3.78
Sm	2.26	2.65	2.67	2.9	2.71	3.33	3.45	3.33	3.57	3.62	3.36	0.45	0.62
Eu	0.66	0.65	0.6	0.71	0.74	1.04	0.98	1.04	0.98	1.01	0.97	0.13	0.15
Gd	2.08	2.35	2.3	2.55	2.43	3.12	3.2	3.14	3.36	3.33	3.19	0.38	0.51
Тb	0.28	0.3	0.32	0.33	0.31	0.37	0.39	0.37	0.44	0.35	0.33	0.05	0.06
Dy	1.2	1.31	1.39	1.44	1.37	1.67	1.65	1.61	1.8	1.77	1.66	0.23	0.26
Нo	0.21	0.21	0.24	0.24	0.23	0.32	0.31	0.29	0.34	0.32	0.31	0.05	0.05
Er	0.63	0.63	0.66	0.71	0.69	0.97	0.97	0.92	1.03	1	0.98	0.13	0.13
Τm	0.09	0.08	0.09	0.09	0.09	0.14	0.14	0.13	0.15	0.14	0.13	0.01	0.01
Yb	0.53	0.52	0.57	0.56	0.58	0.88	0.92	0.9	1	0.96	0.96	0.11	0.12
Lu	0.08	0.08	0.09	0.09	0.09	0.14	0.14	0.14	0.16	0.15	0.15	0.01	0.01
Y	6.6	6.86	7.38	7.52	7.32	9.58	9.79	9.07	10.7	9.48	9.27	1.37	1.46
$\Sigma_{\rm REE}$	85.1	98.2	86.3	105.4	101.5	145.3	153.4	150.3	160	158.6	154.3	17.4	24.4
L REE/ H R EE	6.27	6.96	5.62	6.79	6.74	7.45	7.76	8.07	7.43	8.06	8.09	6.43	8.33
Eu/ Eu*	0.92	0.78	0.72	0.79	0.86	0.97	0.89	0.97	0.85	0.87	0.89	0.94	0.79
Ce/ Ce*	0.97	0.94	0.93	0.93	0.92	0.93	0.93	0.92	1	0.96	0.96	0.97	0.9

测试单位: 国家地质实验测试中心, 用等离子质谱法(ICP-MS)测定。量的单位: $w_{\rm B}/10^{-6}$ 。

31

花岗闪长岩 w(SiO₂) = 65.56% ~ 68.5%,平均 67.53%; w(K₂O+ N_a₂O)7.54% ~ 8.67%,平均 8.00%; N_a₂O/K₂O = 0.64~ 1.15,平均为0.87。过 碱指数(AKI)为0.51~0.57,平均0.55;碱度率 (A.R.)为2.53~3.04,平均2.81;分异指数(DI)为 78.63~82.21,平均80.59。

数据表明,花岗岩和花岗闪长岩均属于高硅铝 强分异的中酸性火成岩,两类岩体的 Q-A-P 分 类图解投影均落于二长花岗岩区,岩石稀土元素地 球化学和 Si,S 同位素研究表明矿体与两种岩体的 同源性特征^④。

(2) 从大草坪样品的稀土元素分析结果可以看 出, 从花岗闪长岩(145.3×10⁻⁶~160×10⁻⁶)、花岗 岩(85.1×10⁻⁶~105.4×10⁻⁶)到矿体(石英脉17.4 ×10⁻⁶~24.4×10⁻⁶), 稀土总量逐步降低(平均值 153.7×10⁻⁶ 95.3×10⁻⁶ 20.9×10⁻⁶), 轻、重 稀土比值也呈降低趋势(平均值7.81 \rightarrow 6.48 \rightarrow 7.38), 具有明显的同源成岩特征^④。稀土元素球粒 陨石标准化配分曲线(图 2) 显示 LREE 相对富集, 球粒陨石标准化曲线向右倾斜。

图 2 大草坪钼矿不同岩石球粒陨石标准化 REE 分布型式

Fig. 2 Chondrite normalized REE patterns of rocks and ore from the Dacaoping Molybdenum deposit

3 矿床成因

3.1 成岩成矿时代

对矿区的岩浆岩进行的同位素年龄测定(单颗粒 锆石 U-Pb 法),矿区花岗岩的形成年龄为 219.4~ 267.8 Ma,获得²⁰⁶Pb/²³⁸U 平均年龄为(225.6±1.6) Ma;花岗闪长岩的年龄为 134.2~184.2 Ma,获得 ²⁰⁶Pb/²³⁸U 平均年龄值(137.2±1.4) Ma,表明区内花 岗岩和花岗闪长岩分属于印支期和燕山期产物[8]。

对大草坪钼矿区 3 个辉钼矿样品进行的 Re Os 同位素测试分别获得(146.6±2.3) Ma,(137.2± 2.5) Ma和(136.3±2.1) Ma的模式年龄,平均值为 (140.0±2.3) Ma。由此可知,大草坪钼矿形成于矿 区花岗闪长岩侵位之后,同属燕山早期的产物。

3.2 成岩成矿环境

大草坪钼矿赋存于花岗闪长岩及花岗岩中,围 岩与钼矿体具有密切的成因联系。对大草坪钼矿围 岩的原始铅同位素²⁰⁶ Pb/²⁰⁴ Pb 和²⁰⁶ Pb/²⁰⁷ Pb 进行统 计并投图^[8](表 3),铅同位素数据投图点位比较集 中,均落在造山带附近(图 3)。据此推断,矿区花岗 闪长岩和花岗岩是在造山带环境中形成的;中生代 燕山造山活动非常强烈,同构造期的金属元素大规 模成矿无疑受这次构造岩浆活动的制约。

图 3 大草坪钼矿床岩体中初始铅同位素组成

(图中 Pb 演化曲线采用 Doe Zartman 模式)

Fig. 3 The initial Pb isotope composition diagram of the rocks from the Dacaoping Mo deposit

表 3 大草坪钼矿床岩石中原始铅同位素组成

Table 3 The initial Pb isotope compositions of the rocks from the Dacaoping Mo deposit

岩石类型	样号	206 Pb/ 204 Pb	207Pb/204Pb
龙岗闪长岩	ZK1901-205-2	18.513	15.620
化内内石	ZK1901-310-2	18.969	15.617
	B3-1	18.365	15.609
	B3-2	18.318	15.609
花岗岩	B4-1	18.365	15.612
	B4-2	18.302	15.608
	B8-1	18.350	15.611

3.3 成矿流体的来源

流体的来源是确定矿床成因的重要因素。大草

坪钼矿石石英的 δ (³⁰Si_{NBS-28}) = -0.1×10⁻³~0.2× 10⁻³, 平均值为 0.07×10⁻³; 花岗闪长岩的 δ (³⁰Si_{NBS-28}) = 0.0~0.2×10⁻³, 平均为 0.1×10⁻³; 花岗岩岩体的 δ (³⁰Si_{NBS-28}) = 0.1×10⁻³~0.2× 10⁻³, 平均为 0.15×10⁻³。花岗岩⁻³花岗闪长岩⁻³ 矿石石英的 δ (³⁰Si_{NBS-28})值从 0.15×10^{-3 · 0}.1× 10^{-3 · 0}.07×10⁻³依次减小,这既可以反映出三者 之间的继承性关系,也说明花岗岩与花岗闪长岩具 有同源的特点。

大草坪钼矿床的硫同位素显示, 辉钼矿与黄铁 矿中的 $\delta(^{34}S)$ 组成基本一致, 分布范围介于 2.8× 10^{-3} ~ 4.4× 10^{-3} 之间, 均值为 3.4× 10^{-3} ; 具有明 显的深源硫的塔式分布特征, 说明大草坪钼矿床成 矿热液中的硫主要是深部来源, 与花岗闪长岩体具 同源特征。

大草坪钼矿区包裹体液相成分以富 C Γ , Na⁺, SO²⁻, K⁺和 Ca²⁺, 贫 F⁻, NO³和 Mg²⁺为特征, 气 相成分以富 CO₂和 N₂为特征, w (CO₂) = 39.4% ~ 53.3%。总盐度 = 8.6% ~ 25.8%, 其中液相溶解物 的总盐度 = 7.5% ~ 24.8%, 相当于 1.6~3.3 mol/ kg, 具有天水的特点, 因此认为成矿热液中的水是以 大气降水为主。

3.3 成矿温度的确定

从大草坪钼矿流体包裹体测温资料(表5)和包 裹体均一化温度频数直方图(图4)可以看出,大草 坪钼矿的流体包裹体均一化温度范围为100~360 ℃,众值出现在180~220℃之间^④。说明大草坪矿 区的热液活动具有中低温热液的特点。

Fig. 4 Frequency histogram for homogenization temperatures of fluid inclusions in the Dacaoping Mo deposit

表 5 大草坪钼矿流体包裹体均一化温度及盐度^[8]

Table 5 Homogenization temperatures and salinity of fluid

inclusions in the Dacaoping Mo deposit

样	矿	包体	均]ー温度(℃	C)	盐	盐度 w(NaCl)/%			
号	物	类型	个数	范围	平均值	个数	范围	平均值		
PD1	石英	II	23	102~ 260	176.4	12	0.71~ 10.11	5.7		
JJ	石英	II	15	102~ 363	246. 1	12	3.39~7.17	5.7		
B16	石英	II	30	140~ 357	236.3	19	3.39~ 6.59	5.0		
B18	石英	II	25	96~ 307	222.4	13	5.11~ 7.17	6.2		
B20	石英	II	26	90~ 252	205.5	20	5.11~ 9.86	7.9		
B22	石英	II	21	97~ 281	179.8	12	3.06~ 9.21	7.0		
B23	石英	II	13	120~ 266	214.8	11	5.41~ 8.28	6.6		
B24	石英	II	32	108~ 330	220. 8	10	0. 53~ 6. 30	2.9		
B26	石英	II	26	165~ 292	240.1	14	1. 23~ 4. 18	2.6		
B28	石英	II	21	136~ 312	181.8	9	6.01~ 7.17	6.5		
B30	石英	II	15	180~ 212	192.7	9	2.74~ 4.49	4.1		
B31	石英	II	21	180~ 234	203.2	13	1.23~ 7.59	3.5		

4 成矿作用

4.1 区域成矿作用

冀北地区自中生代以来受滨太平洋构造域的控制,为大陆边缘活动带的环境下的陆相隆坳演化系统,区域构造线为 NNE 向。三叠系仅发育于部分沉积盆地中,晚三叠世本区出现以变质核杂岩为模式的板内造山活动,出现大型断陷盆地,构造-岩浆活动强烈,沿深大断裂带形成幔源基性-超基性岩和壳源酸性-碱性花岗岩类,在 NNE 向与 EW 向深断裂交汇部位附近形成铁、磷、钒、钛、钼、金矿床。 燕山期是中国东部构造-岩浆活动的鼎盛时期,同时出现大规模的成矿作用。印支-燕山期,冀北的乌龙沟 一上黄旗深断裂带构造-岩浆-成矿作用强烈,形成了一批金、银、铅、锌、铜、铁、钼矿床,代表性矿床有丰宁撒岱沟门大型钼矿床、牛圈-营房银铅锌多金属矿床、千佛寺铅锌矿床、大草坪钼矿床等。 4.2 大草坪钼矿的成矿作用

大草坪钼矿区受乌龙沟一上黄旗深断裂及其次 级断裂的影响, 自古生代至中生代, 经历了强烈的海 西、印支、燕山旋回构造-岩浆活动, 由近 EW 向晚 古生代大陆边缘活动带发展转化为 NNE 向中生代 大陆边缘活动带, 中生代燕山期火山活动强烈, 深成 - 浅成侵入岩极为发育。大规模侵入作用的晚期, 深部岩浆逐步结晶, 岩浆中释放出大量的结晶水和 挥发组分沿着断裂或岩石中的薄弱界面向深度较浅 的部位和压力较低的部位运移, 在运移的过程中携 带了较多的成矿元素, 并在较浅部有大量的地下水 (天水)参与其中,构成了岩浆期后含矿热水溶液。 这种含矿热液贯入早期(或同期)产生的低压区(断 裂、节理等)中,并在汤河断裂及其旁侧次级断裂中 成矿,形成脉状、细脉状钼矿体。

5 结论

(1)大草坪钼矿位于冀北上黄旗构造岩浆岩带 钼多金属成矿带中,赋矿围岩为花岗岩及花岗闪长 岩,钼矿化主要产于呈NW向平行产出的4个矿化 蚀变带中。

(2) 矿区花岗岩的²⁰⁶ Pb/²³⁸ U 年龄为(225.6± 1.6) Ma,为印支期产物;花岗闪长岩的²⁰⁶ Pb/²³⁸ U 年 龄为(137.2±1.4) Ma,属燕山期产物;矿石中辉钼 矿的 Re Os 模式年龄平均值为(140.0±2.3) Ma,钼 矿形成于燕山期,与矿区花岗闪长岩为同期产物。

(2)大草坪钼矿矿石中石英的 $\delta(^{30} Si_{NBS-28}) = -0.1 \times 10^{-3} \sim 0.2 \times 10^{-3}$,平均 0.07×10^{-3} ,与花岗闪长岩岩体的 $\delta(^{30} Si_{NBS-28})$ 值(0.10×10^{-3})接近,指示着矿石中的硅来源于岩体;钼矿石的硫同位素 $\delta(^{34}S) = 2.8 \times 10^{-3} \sim 4.4 \times 10^{-3}$,均值为 3.4×10^{-3} ,说明大草坪钼矿床的硫主要来深部。

(3)大草坪矿区流体包裹体均一化温度为 100 ~ 360 ℃,多数介于 180~ 220 ℃之间。说明大草坪 矿区的热液活动具有中低温热液的特点,大草坪钼 矿床属于与燕山期岩浆作用有关的中低温热液型脉 状钼矿床。

致谢:本文参阅了段焕春总工程师等多位专家的 资料和文献,成文过程中得到国土资源部天津地矿研 究所秦正永教授的悉心指导,在此一并表示感谢! 注释:

- ①郭忠, 孙冀凡. 河北省丰宁县大草坪钼矿床普查地质报告(2005 年度)[R]. 天津: 天津华北地质勘查总院, 2005.
- ②郭忠,邵海峰.河北省丰宁县大草坪钼矿床普查地质报告(2006 年度)[R].天津:天津华北地质勘查总院,2006.
- ③胡建勇,郭忠,孙冀凡.河北省丰宁县大草坪钼矿床普查地质报告 [R].天津:天津华北地质勘查总院,2008.
- ④段焕春,毛景文,郭忠,等.冀北上黄旗构造岩浆岩带中段钼矿成 矿规律研究[R].天津:天津华北地质勘查局地质研究所,2006.

参考文献:

- [1] 阮天健, 朱有光. 地球化学找矿[M]. 北京: 地质出版社, 1985.
- [2] 翟裕生. 区域成矿学[M]. 北京: 地质出版社, 1993.
- [3] 河北省地矿局.河北省、北京市、天津市区域地质志[M].北京: 地质出版社, 1989.
- [4] 章百明,马国玺,毕伏科,等.河北省主要成矿区带矿床成矿系 列及成矿模式[M].北京:石油出版社,1996.
- [5] 河北省地矿局.河北省、北京市、天津市区域矿产总结[M].北 京:地质出版社, 1986.
- [6] 孙冀凡, 王会文. 冀北小寺沟铜钼矿外围银金资源潜力浅析
 [J]. 地质找矿论丛, 2004, 19(1): 20-23.
- [7] 代军治,毛景文,杨富全,等.华北地台北缘燕辽钼(铜)成矿带
 矿床地质特征及动力学背景[J].矿床地质,2006,25(5):599-609.
- [8] 段焕春,秦正永,林晓辉,等.河北丰宁县大草坪钼矿区岩体
 石 U-Pb 年龄研究[J].矿床地质,2007.26(6):634642.
- [9] 毕伏科,肖文暹.河北省成矿区带和找矿远景区[J].地质调查 与研究,2006,29(2):107-113.
- [10] 胡建勇,李辉.冀北大草坪一杨树沟钼矿区成矿作用与找矿方向[J].矿产与地质,2010,24(1):16-19.
- [11] 段焕春. 冀北上黄旗构造岩浆岩带北段钼多金属矿成矿规律 及找矿远景研究[D].北京:中国地质科学院矿产资源研究 所,2007.

Geological characteristics and genesis of Dacaoping molybdenum deposit in the northern Hebei Province

GUO Zhong, XIAO Cheng-dong, WANG Zi-li

(Tianjin North China Geological Exploration Bureau, Tianjin 300170, China)

Abstract: Dacaoping molybdenum deposit is located in Mopoly-metal metallogenic belt at Shanghuangqi tectonie-magmatic belt in northern Hebei Province, hosted by granite and granodiorite and formed in Yanshanian period. The metallogeny is controlled by Yanshan orogenic belt. It is characterized by multi-sources, multi-genesis and multi- ore forming stage. Ore fluid is mainly meteoric water. Homogenization temperature data of fluid inclusions in range of 100 to 360 °C and concentration between 180 to 220 °C indicate that Dacaoping Mo deposit is a meso-epithermal deposit.

Key Words: Dacaoping molybdenum deposit; geological characteristics; deposit genesis; Hebei province