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Abstract: In this article, we study the asymptotic properties for wavelet estimator of re-

gression function. By using the method of the probability inequalities, we obtain the r-moment

convergence, consistency and asymptotic normality for the wavelet estimator of g(·), which gener-

alize the corresponding results for mixing dependent random sequences.
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1 Introduction

Consider the estimation of a standard nonparametric regression model involving an
regression function g(·) which is defined on [0,1]

Yi = g(ti) + εi (1 ≤ i ≤ n), (1.1)

where {ti} are non-random design points, denoted by {ti} and taken to be ordered 0 ≤ t1 ≤
· · · ≤ tn ≤ 1, {εi} are random errors.

It is well known that regression function estimation is an important method in data
analysis and has a wide range of applications in filtering and prediction in communications
and control systems, pattern recognition and classification, and econometrics. So model
(1.1) was studied extensively.

For model (1.1), the estimator of g(·) is defined as

gn(t) =
n∑

i=1

Yi

∫

Ai

Em(t, s)ds, (1.2)
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The wavelet kernel Em(t, s) can be defined as follows: Em(t, s) = 2mE0(2mt, 2ms) =
2m

∑
k∈Z

φ(2mt− k)φ(2ms− k), φ(·) is a scaling function, where Ai = [si−1, si] is a partition

of interval [0,1], si = (1/2)(ti + ti+1), and ti ∈ Ai, 1 ≤ i ≤ n.
We knew that wavelets was used widely in many engineering and technological fields,

especially in picture handling by computers. In order to meet practical demands, since the
90s of the 20th century, some authors considered using wavelet methods in statistics.

It was well known that wavelet estimation methods was studied extensively, for in-
stance, Antoniadis et al. (1994) introduced wavelet analogues of some familiar kernel and
orthogonal series estimators, studied their finite sample and asymptotic properties, and dis-
covered that is a fundamental instability in the asymptotic variance of wavelet estimators
caused by the lack of translation invariance of wavelet transform; Sun and Chai (2004) on
the α-mixing stationary process considered the same nonparametric regression model in this
paper, the authors adopted wavelet method to estimate g(·) and studied it’s consistency,
strong consistency and convergence rate; Liang and Wang (2010) used the wavelet method

to study semi-parametric regression model yi = xiβ + g(ti) + Vi, (Vi =
∞∑

j=−∞
cjei−j), and

obtained reasonable results; Hu et al. (2013), using the wavelet method, obtained some
estimators of the parametric component, the nonparametric component and the variance
function, investigated the asymptotic normality and weak consistence rates of these wavelet
estimators. In Lu and Tao’s (2012) a new wavelet-based algorithm was developed using
log-linear relationship between the wavelet coefficient variance and the scaling parameter.

Definition 1.1 A finite family of random variables {Yj , 1 ≤ j ≤ n} is said to be
positively associated (PA). If for every pair of disjoint subsets A1 and A2 of {1, · · ·, n}, it
holds that

Cov{g1(Yi, i ∈ A1), g2(Yj , j ∈ A2)} ≥ 0,

where g1 and g2 are nondecreasing coordinate wise for every variable and such that covariance
exists. Infinite families of random variables are said to be PA, if any finite subset of them is
a set of PA random variables.

The definition of PA random variables was introduced by Esary et a1. (1967), who
studied it in detail. It is well known that PA random variables are widely encountered in
applications, for example, in reliability theory, in mathematical physics and in percolation
theory. For a recent review of this concept along with many probabilistic and statistical re-
sults, Yang and Li (2005) discussed the uniformly asymptotic normality of the nonparametric
regression weighted estimator in positively associated samples and gave the rates of the uni-
formly asymptotic normality; Li et a1. (2008) studied uniformly asymptotic normality of
wavelet estimator of regression function, the rates of uniformly asymptotic normality were
shown as O(n−1/6); Xing and Yang (2011) discussed strong convergence rate for positively
associated random variables and gave the strong convergence rate; Li and Li (2013), using
the properties of positively associated random variables, obtained the precise asymptotic for
moving average processes, the results are some generalizations of previous results for moving
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average processes based on negatively associated random variables.
In this paper, we aim to discuss the asymptotic properties for wavelet estimator of a

nonparametric fixed design regression function when errors are strictly stationary and PA
random variables.

2 Assumptions and Main Results

In order to list some restrictions for ϕ and g, we give two definitions here.
Definition 2.1 Function ϕ is said to be τ -regular (ϕ ∈ Sτ , τ ∈ N) if for any l ≤ γ and

any integer k, one has | ∂l
ϕ

dxl | ≤ Ck(1 + |x|)−1, where Ck is a constant depending only on k.
Definition 2.2 A function space Hν(ν ∈ R) is said to be Sobolev space of order V,

i.e., if h ∈ Hν then
∫
|ĥ(w)|2(1 + w2)νdw < ∞, where ĥ is the Fourier transform of h.

Some basic assumptions
(A1) g(·) ∈ Hν , ν > 1/2, and g(·) satisfy the Lipschitz condition of order 1;
(A2) ϕ(·) ∈ Sτ , and ϕ(·) satisfy the Lipschitz condition with order 1 and |ϕ̂(ε) − 1| =

O(ε) as ε →∞, where ϕ is the Fourier transform of ϕ;
(A3) max

1≤i≤n
|si − si−1| = O(n−1);

(A4) (i) for each n, the joint distribution of {εi; i = 1, · · ·n} is the same as that of
{ξ1; , · · · ξn}, where {ξi; i = 1, · · ·n} is PA time series with zero mean and finite second
moment, sup

j≥1
E(ξ2

j ) < ∞; (ii) sup
j≥1

E(ξ2+δ
j ) < ∞ for some δ > 0;

(A5) u(q) = sup
i∈N

∑
j:|j−i|≥q

|Cov(εi, εj)|, with u(1) < ∞;

(A6) there exist positive integers p := p(n) and q := q(n) such that p + q ≤ n for
sufficiently large n and as n →∞, (i) qp−1 → 0, (ii) pn−1 → 0.

Our main results are as follows.
Theorem 2.1 Let {εi; 1 ≤ i ≤ n} be PA errors with mean zero and sup

1≤i≤n
Eε2

i = σ2 <

∞. Assume that assumptions (A1)–(A4) are satisfied. When 0 < r ≤ 2, then

E|gn(t)− g(t)|r = O(n−r) + O(η−r
m ) + O(22m/n)r/2.

Furthermore, let 22m/n → 0. When 0 < r ≤ 2, then

lim
n→∞

E|gn(t)− g(t)|r = 0.

Theorem 2.2 Let {εi; 1 ≤ i ≤ n} be identically distributed PA errors, and E|εi| =
O(i−(1+2ρ)), Eε2

i = σ2 < ∞. Assume that assumptions (A1)–(A3) hold, and 2m = O(n1−τ )
for 1/2 < τ < 1, then

sup
0≤t≤1

|gn(t)− g(t)| p→ 0.

Theorem 2.3 Let {εi; 1 ≤ i ≤ n} be PA errors with mean zero, assume that assump-
tions (A1)–(A3) hold, and 2m = O(n1−τ ) for 1/2 < τ < 1, then

gn(t) → g(t) a.s..
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Theorem 2.4 Let g : A → R is a bounded function defined on the compact subset A

of Rd and (A1)–(A6) hold, we have

σ−1
n (t){gn(t)− g(t)} d→ N(0, 1).

Remark 2.1 Condition (A1)–(A3) are general conditions of wavelet estimation, see
[2–5]; Condition (A4)–(A5) are the same basic assumption as that used in literature (Yang
(2005)), this shows that both the weighted function estimation and wavelet estimation can
use the same assumption; proper selection of p, q for condition (A6) is easy to be satisfied,
thus assumption is reasonable, which is the same as the literature (Yang (2005)) too, so we
can see that the conditions in this paper are suitable and reasonable.

Remark 2.2 (I) Theorem 2.2 generalize and extend Theorem 2.1 of Li et al. (2008)
from the weak consistency to uniformly weak consistency, it meas Theorem 2.2 will be
satisfied under PA.

(II) Theorem 2.3 of Li et al. (2008) using general method discussed uniformly asymp-
totic normality of wavelet estimator of regression function, the rates of uniformly asymptotic
normality were O(n−1/6), but Theorem 2.4 use theorem condition of Lyapunov central limit
to discuss uniformly asymptotic normality. Under the same condition, we get more ideal
results. So Theorem 2.4 improves and extends the corresponding results in Theorem 2.3 of
Li et al. (2008).

3 Some Lemmas

In order to prove our main results, we need the following lemmas.
Lemma 3.1 Under assumptions (A1)–(A3), we have

(I) sup
x,m

∫ 1

0

|Em(x, y)|dy < ∞;

(II)
∫ 1

0

|Em(t, s)|g(s)ds = g(t) + O(ηm), where

ηm =





(1/2m)ν−1/2, 1/2 < ν < 3/2,√
m/2m, ν = 3/2,

1/2m, ν > 3/2;

(III) |
∫

Ai

Em(x, y)ds| = O(2m/n), i = 1, · · · , n;

(IV)
n∑

i=1

(
∫

Ai

Em(x, y)ds)2 = O(2m/n).

Proof The proofs of (I) and (II) can see Antoniadis et al. (1994), and (III) and (IV)
can be found in Lemma 2.1(3) of Sun and Chai (2004).

Lemma 3.2 Let assumptions (A1)–(A3) hold, and {εi; 1 ≤ i ≤ n} be PA random
variables with zero means, then

(I) Egn(t)− g(t) = O(ηm) + O(n−1), lim
n→∞

Egn(t) = g(t);
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(II) sup
0≤t≤1

|Egn(t)− g(t)| = O(ηm) + O(n−1), lim
n→∞

sup
0≤t≤1

|Egn(t)− g(t)| = 0.

Proof Follows immediately from Lemma 3.1 and the method used for proving Lemma
3.1 of Sun and Chai (2004).

Lemma 3.3 (see Li (2003)) Let {Zi, i ≥ 1} be random variables, if there exists a

constant ρ > 0, with E|Zi| = O(i−(1+2ρ)), then
∞∑

i=1

Zi a.s. convergence.

Lemma 3.4 (see Yang (2005)) Let {ξj , j ≥ 1} be steady PA random variables with
zero means and sup

j≥1
E(ξ2

j ) < ∞, when r > 2 and δ > 0, sup
j≥1

E|ξj |r+δ < ∞, u(n) =

O(n−(r−2)(r+δ)/(2δ)). Also {aj , j ∈ N} is a sequence of real numbers, a := sup |aj | < ∞.
Then

E

∣∣∣∣∣
n∑

j=1

ajξj

∣∣∣∣∣

r

≤ Carnr/2.

Lemma 3.5 (see Yang (2005)) Let {Xj : j ≥ 1} be a sequence of associated PA random
variables, and let {aj : j ≥ 1} be a real constant sequence, 1 = m0 < m1 < · · · < mk = n.

Denote by Yl :=
ml∑

j=ml−1+1

ajXj for 1 ≤ l ≤ k. Then

∣∣∣∣∣E exp

(
it

k∑
l=1

Yl

)
−

k∏
l=1

E exp(itYl)

∣∣∣∣∣ ≤ 4t2
∑

1≤s≤j≤n

|asaj ||Cov(Xs, Xj)|.

4 Proofs of the Main Results

Proof of Theorem 2.1 By using the Cr -inequality and Jensen inequality for 0 < r ≤ 2,
we have

E|gn(t)− g(t)|r ≤ 2r−1[|Egn(t)− g(t)|r + E|gn(t)− Eg(t)|r]
≤ 2r−1[|Egn(t)− g(t)|r + C|Var(gn(t))|r/2]. (4.1)

From Lemma 3.3 (I), we have

|Egn(t)− g(t)|r = O(n−r) + O(η−r
m ). (4.2)

Assume that assumptions (A1)–(A4) and Lemma 3.1 hold, we have

Var(gn(t)) = σ2
n

n∑
i=1

(∫

Ai

Em(t, s)ds

)2

+ O(22m/n)
∑

1≤i<j≤n

Cov(εni, εnj)

= O(22m/n) + O(22m/n)
n−1∑
i=1

n∑
j=i−1

Cov(εni, εnj)

= O(22m/n). (4.3)

Therefore, the conclusion follows from relations (4.1)–(4.3) and 22m/n → 0.
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Proof of Theorem 2.2 We write

sup
0≤t≤1

|gn(t)− g(t)| ≤ sup
0≤t≤1

|gn(t)− Egn(t)|+ sup
0≤t≤1

|Egn(t)− g(t)| := In3 + In4. (4.4)

By Lemma 3.2 (II), we have

In4 → 0 (n →∞). (4.5)

Now, In3 can be decomposed as

In3 = sup
0≤t≤1

∣∣∣∣∣
n∑

i=1

εi

∫

Ai

Em(t, s)ds

∣∣∣∣∣ = sup
0≤t≤1

∣∣∣∣∣
n∑

i=1

εi

∫

Ai

Em(t, s)ds

n∑
j=1

I(sj−1 < t ≤ sj)ds

∣∣∣∣∣

≤ sup
0≤t≤1

∣∣∣∣∣
n∑

i=1

εi

∫

Ai

n∑
j=1

(Em(t, s)− Em(tj , s))I(sj−1 < t ≤ sj)ds

∣∣∣∣∣

+ sup
0≤t≤1

∣∣∣∣∣
n∑

i=1

εi

∫

Ai

n∑
j=1

Em(t, s)dsI(sj−1 < t ≤ sj)ds

∣∣∣∣∣ := In31 + In32. (4.6)

By condition of Theorem 2.2 and Lemma 3.3 we have

In31 ≤ sup
0≤t≤1

n∑
i=1

|εi|
∫

Ai

n∑
j=1

|Em(t, s)− Em(tj , s)|I(sj−1 < t ≤ sj)ds

≤ C sup
0≤t≤1

(
n∑

j=1

|εi|
∫

Ai

n∑
j=1

(22m/n)I(sj−1 < t ≤ sj)ds

)
≤

n∑
i=1

|εi|
n4/3

= O(n−4/3),(4.7)

In32 ≤ sup
0≤t≤1

∣∣∣∣∣
n∑

j=1

I(sj−1 < t ≤ sj)

∣∣∣∣∣

∣∣∣∣∣
n∑

i=1

εi

∫

Ai

Em(tj , s)ds

∣∣∣∣∣

≤ sup
0≤t≤1

n∑
j=1

I(sj−1 < t ≤ sj) max
1≤j≤n

∣∣∣∣∣
n∑

i=1

εi

∫

Ai

Em(tj , s)ds

∣∣∣∣∣

≤ max
1≤j≤n

∣∣∣∣∣
n∑

i=1

εi

∫

Ai

Em(tj , s)ds

∣∣∣∣∣ .

By the Markov inequality, Lemma 3.1 and Lemma 3.4, we have

P (|In32| ≥ n−1/12) ≤
n∑

j=1

P

(
n∑

i=1

|εi

∫

Ai

Em(t, s)ds| ≥ ε

)
≤ n

E

(
n∑

i=1

|εi

∫
Ai

Em(t, s)ds|
)r

n−r/12

≤ Cn
(n−12m)rnr/2

n−1/12
= Cn1−r/12 → 0, (4.8)

therefore |In32| = O(n−1/12). Therefore by (4.7) and (4.8) we have In3 → 0 (n → ∞),
combining (4.5) Theorem 2.2 is verified.
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Proof of Theorem 2.3 We observe that

|gn(t)− g(t)| ≤ |gn(t)− Egn(t)|+ |Egn(t)− g(t)|. (4.9)

By Lemma 3.2 (I) we have |Egn(t) − g(t)| → 0. Then according to (4.11) we only need to
verify that

|gn(t)− Egn(t)| → 0. (4.10)

By the Markov inequality and Lemma 3.4, Lemma 3.1 (III) we have

|Egn(t)− gn(t)| =

∣∣∣∣∣
n∑

i=1

εi

∫

Ai

Em(t, s)ds

∣∣∣∣∣ ,

P

(
n∑

i=1

εi

∫

Ai

Em(t, s)ds > ε

)
≤

E

∣∣∣∣
n∑

i=1

∫
Ai

Em(t, s)dsεi

∣∣∣∣
r

εr

≤ C

∣∣∣∣
∫

Ai

Em(t, s)ds

∣∣∣∣
r

nr/2 = Cn−1/6.

Therefore
∑

n

P

(
n∑

i=1

εi

∫

Ai

Em(t, s)ds > ε

)
< ∞,

then by Borel-Cantelli lemma, we have
n∑

i=1

εi

∫

Ai

Em(t, s)ds → 0 a.s.. (4.11)

Therefore by (4.10), (4.11) combining (4.9) and Theorem 2.3 is verified.
Proof of Theorem 2.4 Let

σ2
n(x) = Var(gn(x)), Sn(t) = σ−1

n (t){gn(t)− g(t)}, Zni = σ−1
n εi

∫

Ai

Em(t, s)ds

for i = 1, · · · , n, so that Sn =
n∑

i=1

Zni. Let k = [n/(p + q)]. Then Sn may be split as

Sn = S′n + S′′n + S′′′n , where

S′n =
k∑

m=1

ynm, S′′n =
k∑

m=1

y′nm, S′′′n = y′nk+1,

ynm =
km+p−1∑

i=km

Zni, y′nm =
lm+q−1∑

i=lm

Zni, y′nk+1 =
n∑

i=k(p+q)+1

Zni,

km = (m− 1)(p + q) + 1, lm = (m− 1)(p + q) + p + 1, m = 1, · · ·, k.

Thus, to prove the theorem, it suffices to show that

E(S′′n)2 → 0, E(S′′′n )2 → 0, (4.12)

S′n
d→ N(0, 1). (4.13)
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By Lemma 3.4, (4.3), A5 and A6, we have

E(S′′n)2 = σ−2
n

k∑
m=1

lm+q−1∑
i=lm

(∫

Ai

Em(t, s)ds

)2

E(εi)2

+2σ−2
n

k∑
m=1

∑
lm≤i≤j≤lm+q−1

∫

Ai1

Em(t, s)ds

∫

Ai2

Em(t, s)dsCov(εi1 , εi2)

+2σ−2
n

∑
1≤m≤s≤k

lm+q−1∑
i1=lm

ls+q−1∑
i2=ls

∫

Ai1

Em(t, s)ds

∫

Ai2

Em(t, s)dsCov(εi1 , εi2)

≤ C

{
kq +

k∑
m=1

q−1∑
i=1

(q − i)Cov(ε1, εi+1) +
k∑

m=1

lm+q−1∑
i1=lm

k∑
s=m+1

ls+q−1∑
i2=ls

Cov(ε1, εi+1)

}
/n

≤ C{kq + ku(1) + ku(p)}/n ≤ Ckq ≤ Cqp−1 → 0,

E(S′′′n )2 ≤ σ−2
n

n∑

i=k(p+q)+1

(
∫

Ai

Em(t, s)ds)2E(εi)2

+2σ−2
n

∑

k(p+q)+1≤i1≤i2≤n

∫

Ai1

Em(t, s)ds

∫

Ai2

Em(t, s)dsCov(εi1 , εi2)

≤ C

{
(n− k(p + q)) +

n−k(p+q)−1∑
i=1

Cov(ε1, εi+1)

}
/n

≤ C{(n/(p + q)− k)(p + q) + u(1)}/n ≤ Cpn−1 → 0.

Thus (4.12) holds.
We now proceed with the proof of (4.13). Let Γn =

∑
1≤i<j≤k

Cov(yni, ynj), and s2
n =

k∑
m=1

Var(ynm), then s2
n = E(S′n)2 − 2Γn. Apply relation (4.12) to obtain E(S′n)2 → 1. This

would also imply that s2
n → 1, provided we show that Γn → 0

Indeed, by assumption (A5) we obtain u(q) → 0. Then by stationarity and theorem
condition, it can be shown that

|Γn| ≤
∑

1≤i<j≤k

ki+p−1∑
s=ki

kj+p−1∑
t=kj

σ−2
n

∣∣∣∣
∫

As

Em(t, s)ds

∫

At

Em(t, s)ds

∣∣∣∣ |Cov(εs, εt)|

≤ C

k−1∑
i=1

ki+p−1∑
s=ki

∣∣∣∣
∫

As

Em(t, s)ds

∣∣∣∣
k∑

j=i+1

kj+p−1∑
t=kj

|Cov(εns, εnt)|

≤ C

k−1∑
i=1

ki+p−1∑
s=ki

∣∣∣∣
∫

As

Em(t, s)ds

∣∣∣∣ · sup
j≥1

∑

t:|t−j|≥q

|Cov(εj , εt)|

≤ Cu(q) → 0. (4.14)

Next, in order to establish asymptotic normality, we assume that {ηnm : m = 1, · · · , k}
are independent random variables, and the distribution of ηnm is the same as that ηnm for
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m = 1, · · · , k. Then Eηnm = 0 and Var(ηnm) = Var(ynm). Let Tnm = ηnm/sn,m = 1, · · · , k,
then {Tnm,m = 1, · · · , k} are independent random variables with ETnm = 0 and Var(Tnm) =
1. Let φX(t) be the characteristic function of X, then

∣∣∣∣∣φ k∑
m=1

ynm

(t)− e−t2/2

∣∣∣∣∣

≤
∣∣∣∣∣E exp

(
it

k∑
m=1

ynm

)
−

k∏
m=1

E exp(itynm)

∣∣∣∣∣ +

∣∣∣∣∣
k∏

m=1

E exp(itynm)− e−t2/2

∣∣∣∣∣

≤
∣∣∣∣∣E exp

(
it

k∑
m=1

ynm

)
−

k∏
m=1

E exp(itynm)

∣∣∣∣∣ +

∣∣∣∣∣
k∏

m=1

E exp(itηnm)− e−t2/2

∣∣∣∣∣ .

By Lemmas 3.5, relation (4.14), we obtain that
∣∣∣∣∣E exp

(
it

k∑
m=1

ynm

)
−

k∏
m=1

E exp(itynm)

∣∣∣∣∣

≤ 4t2
∑

1≤i<j≤k

ki+p−1∑
s=ki

kj+p−1∑
t=kj

|Cov(Zs, Zt)|

= 4t2
∑

1≤i<j≤k

ki+p−1∑
s=ki

kj+p−1∑
t=kj

σ−2
n

∣∣∣∣
∫

As

Em(t, s)ds

∫

At

Em(t, s)ds

∣∣∣∣ |Cov(εs, εt)|

≤ Ct2u(q) → 0.

Thus, it suffices to show that ηnm
d→ N(0, 1) which, on account of s2

n → 1, will follow

from the convergence
k∑

m=1

Tnm
d→ N(0, 1). By the Lyapunov condition, it suffices to show

that for some r > 2,
1
sr

n

k∑
m=1

E|ηnm|r → 0. (4.15)

Using Lemma 3.4 and (A6), we have

k∑
m=1

E|ηnm|r =
k∑

m=1

E|ynm|r = σ−r
n

k∑
m=1

E

∣∣∣∣∣
km+p−1∑

i=km

εi

∫

Ai

Em(t, s)ds

∣∣∣∣∣

r

≤ Cσ−r
n

k∑
m=1

(2m/n)rpr/2 = C(pn−1)r/2−1 → 0,

so (4.15) holds. Thus the proof is completed.
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PA误差下回归函数小波估计的渐近性质

丁立旺1, 李永明2, 冯烽1

(1.广西财经学院信息与统计学院, 广西南宁 530003)

(2.上饶师范学院数学与计算机科学系, 江西上饶 334001)

摘要: 本文研究了回归函数小波估计的渐进性质的问题. 利用概率不等式方法, 获得了函数g(·)的小波
估计量的r -阶矩相合, 依概率收敛和强收敛以及渐进正态性的结果, 所获的结果推广了其他混合相依下的相

应结果.
关键词: 小波估计; 正相协; 相合性; 渐近正态性
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