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Abstract Graph-Based label propagation algorithms are popular in the state-of-the-art

semi-supervised learning research. The key idea underlying this algorithmic family is to

enforce labeling consistency between any two examples with a positive similarity. However,

negative similarities or dissimilarities are equivalently valuable in practice. To this end,

we simultaneously leverage similarities and dissimilarities in our proposed semi-supervised

learning algorithm which we term Bidirectional Label Propagation (BLP). Different from

previous label propagation mechanisms that proceed along a single direction of graph edges,

the BLP algorithm can propagate labels along not only positive but also negative edge

directions. By using an initial neighborhood graph and class assignment constraints inherent

among the labeled examples, a set of class-specific graphs are learned, which include both

positive and negative edges and thus reveal discriminative cues. Over the learned graphs, a

convex propagation criterion is carried out to ensure consistent labelings along the positive

edges and inconsistent labelings along the negative edges. Experimental evidence discovered

in synthetic and real-world datasets validates excellent performance of the proposed BLP

algorithm.
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1 Introduction

In practical applications of machine learning and pattern recognition, one
frequently encounters the very situation where only a few labeled examples are
available for training and a great number of examples remain unlabeled. As large
amounts of unlabeled data can be automatically or cheaply gathered,
Semi-Supervised Learning (SSL)[25], an emerging important machine learning
technique, is coined to deal with the situation of sparsely labeled data and abundant
unlabeled data. The semi-supervised learning scenario has practical utility on many
real-world problems, since it is feasible to collect unlabeled data by an automatic
procedure without users’ intervention but expensive for users to identify labels of
data.

SSL has spurred a lot of efforts in designing effective and efficient algorithms
which aim to mitigate the performance limitations of traditional supervised learning
methods trained on a small set of labeled examples through leveraging a large pool
of unlabeled examples. Among the recent work on semi-supervised classification, the
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Transductive Support Vector Machine (TSVM)[10] attempted to optimize the margins
of both labeled and unlabeled examples. Following TSVMs, Ref. [6] and Ref. [4] did
the cluster-based inference to explore the probable decision boundary for classification
that could exist in the low-density regions of the input sample space. A big family of
graph-based approaches, including Refs. [2,3,12,13,19,21,24,26], founded on spectral
graph theory[5], established a variety of regularization frameworks by introducing
convex regularization penalties embedding graph Laplacians.

The paramount foundation of SSL is an appropriate assumption about the
underlying data structure. Two commonly adopted assumptions are the cluster
assumption and the manifold assumption. The former assumes that data samples
associated with the same structure, typically a cluster or a manifold, probably take
similar class or category labels[4,6]. The latter often implies that close-by sample
points on the same manifold are very likely to take the same label. Note that the
cluster assumption is made globally whereas the manifold assumption often holds
locally. Numerous SSL methods such as the representative ones[2,19,24,26] exploited
such a manifold assumption to pursue smooth prediction functions for classification
or regression along manifolds. Specifically, all these methods represent both labeled
and unlabeled samples into a graph, and employ the graph Laplacian matrix to
discretely approximate the data manifolds. Reference [11] unified the cluster and
manifold assumptions into a single optimization criterion, which actually extends
the TSVM by accessing the manifold structure.

This paper is arranged as follows. Section 2 reviews the related work on graph-
based semi-supervised learning. Section 3 presents the key idea of our proposed SSL
method and gives an algorithmic paradigm for handling transductive and inductive
learning together. Section 4 validates the effectiveness of the proposed SSL method
through experiments. Section 5 includes our conclusion and discussion.

2 Related Work

Although graph-based SSL has been studied extensively, it often lacks sufficient
robustness in real-world learning tasks because of the sensitivity of graphs. The
quality of graphs is very sensitive to the edge connection, the choice of edge weighting
functions, and the related parameters. These factors will considerably influence the
performance of SSL algorithms.

In particular, the representative graph-based SSL algorithms[3,24,26], which are
akin to each other, heavily depend on graphs because they only use graphs to infer the
labels of unlabeled data. Moreover, they only invoke the similarities among adjacent
data points, which are encoded into positive weights of graph edges. In doing so,
the graph construction scheme shared by these methods is unsupervised and thereby
likely to be confounded by complex multi-class data distributions. It is intuitive that
negative similarities or dissimilarities are useful for discovering the discriminative cues
hidden in multiple manifolds formed by multi-class data samples. Actually, we have
known partial knowledge about dissimilarities, i.e., the “cannot-be-the-same-class”
relationship inherent among the samples from different classes.

Let us consider the classical two-moons toy problem to explain our motivation for
exploiting dissimilarities. As shown in Fig. 1, we are given a set of points in a shape of
two moons plus some extra points which are outliers. We simply consider these extra
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points as noisy points. Two points on the upper moon and lower moon are labeled
as ‘+1’ and ‘−1’, respectively. Intuitively, the points on the upper moon should be
labeled as ‘+1’ while those on the lower moon should be ‘−1’. Using the traditional
k−NN graph (k = 10), we run two well-known graph-based SSL algorithms: the Local
and Global Consistency (LGC) method[24] and the Gaussian Fields and Harmonic
Functions (GFHF) method[26] for this toy problem. We only have ground truth
labels for the points on two moons, so we evaluate classification performance over
these on-manifold points. The visual classification results are displayed in Fig. 1,
from which we observe quite a few errors caused by LGC and GFHF but the zero
mistake accomplished by our Bidirectional Label Propagation (BLP) method that will
be proposed in Section 3. Our BLP method succeeds in invoking both similarities
and dissimilarities to perform more sophisticated label propagation than conventional
similarity-driven propagation.
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Figure 1. The noisy two-moons problem given two labeled points. (a) LGC[24] achieves

13.55% error rate with a 10-NN graph; (b) GFHF[26] achieves 14.21% error rate with a

10-NN graph; (c) our method BLP achieves zero error rate with a 10-NN graph.

The importance of dissimilarities to graph-based SSL has been realized by the
recent work[8,20]. Reference [8] modified the graph Laplacian matrix by
incorporating prior dissimilarity information of labeled data, and applied manifold
regularization using the modified graph Laplacian. Reference [20] directly used the
input dissimilarities that naturally arise from collaborative filtering problems. We
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find that the mixed label propagation algorithm proposed in Ref. [20] is
computationally expensive and can only be applied to the context of collaborative
filtering. In this paper, we intend to infer dissimilarities among all data and develop
an algorithm for general multi-class semi-supervised classification.

3 Bidirectional Label Propagation

Our SSL approach is based on a geometric intuition that for many real-world
problems unlabeled data examples often reveal data structures, such as clusters or
low-dimensional manifolds, which provide the useful prior knowledge and potentially
help the label inference. For example, one may expect high correlations among class
labels of examples within the same cluster or on the same local manifold.

This section will address the typical multi-class semi-supervised classification
task. We propose to learn the class-specific graphs under the semi-supervised learning
scenario and subsequently leverage such graphs into multi-class label propagation.
Both graph learning and label propagation collaborate well in our proposed approach.

Suppose that there are C classes {Ωc}C
c=1 appearing in the labeled data subset

{(xi, yi)|yi ∈ {1, · · · , C}}l
i=1 that consists of l examples. If xi ∈ Ωc then yi = c. In

each class Ωc, there are lc = |Ωc| labeled examples.

3.1 Initial k-NN graph

Graph-based machine learning methods presume that data samples are
represented in the form of undirected or directed graphs. Graph-based SSL methods
frequently adopt undirected graphs. In this paper, we aim at learning a set of
real-valued label prediction functions that take as input an undirected weighted
graph G = (V, E, ω). V is a set of vertices with each of them representing a data
sample (point), E ⊆ V × V is a set of edges each of which connects adjacent data
points, and ω : E → R+ is a weighting function that measures the strength of each
edge. The graph representation has been demonstrated to be effective for data
which lie in compact clusters or intrinsic low-dimensional manifolds. More
importantly, graphs naturally characterize pairwise proximities among data objects,
which have been utilized for data clustering, embedding, visualization, and ranking.
This form of data graphs has also been a central focus in computational geometry
areas such as manifold learning[1].

Consider a full data set X = {x1, · · · ,xl, · · · ,xn} ⊂ Rd of which, without loss
of generality, the first l samples are assumed labeled and the remaining n− l ones are
unlabeled. In the graph G each vertex (or node) vi corresponds to each sample xi,
so we also refer to xi as a graph node. Then we put an edge between xi and xj if
xi is among the k nearest neighbors of xj or xj is among the k nearest neighbors of
xi. G thus becomes a k-NN graph. Although there are other strategies for building
edges over data points, it turns out that k-NN graphs have advantages over others
(e.g., h-neighborhood graphs) as shown in Ref. [9]. One of main advantages is that a
k-NN graph provides a better adaptive connectivity because data points in areas of
different densities have different neighborhood scales while the fixed h may lead to
either disconnected or over-connected graphs.
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We define the weighted adjacency matrix W ∈ Rn×n of G as follows

Wij =





exp
(
−d(xi,xj)2

σ2

)
, xj ∈ N(xi) or xi ∈ N(xj)

0, otherwise
(1)

in which the set N(xi) saves the k nearest neighbors of point xi in X and d(xi,xj)
denotes some distance function between points xi and xj . Typically, d(, ) refers to
the Euclidean distance. The width parameter σ is empirically estimated by
σ =

∑n
i=1 d(xi,xik

)/n where xik
is defined as the k-th nearest neighbor of point xi.

Such an estimation is simple and effective enough, as has been verified in Ref. [12].
Obviously, W is a symmetric matrix. Notice that we set Wii = 1 in order to make
W easily invertible.

3.2 Learning class-specific graphs

As mentioned before, the initial k-NN graph is constructed in an unsupervised
manner. Since the partial labelings of the dataset X are available, we would prefer
learning graphs in conjunct with the known label information. To well handle multi-
class problems, we adopt the one-against-all strategy to convert a multi-class problem
to multiple binary one-versus-rest problems. For each class Ωc, we find two types of
pairwise constraints imposed on the co-labelings:

1) the must-link constraint (xi,xj)M with yi = yj , and

2) the cannot-link constraint (xi,xj)C with yi 6= yj and one of yi, yj being c.

For each class Ωc we collect all class-specific constraints in a set Θc, where each
must-link requires two labeled examples to be assigned to the same class label while
each cannot-link requires two labeled examples to be assigned to the label c and a
different label. Note that Θc provides the exact co-labeling knowledge of l labeled
examples. In contrast, the adjacency matrix W of the initially constructed k-NN
graph can estimate the co-labeling probabilities of all example pairs. Specially, Wii =
1 stands for the true decision of assigning the same label for the same example.

The nature of graphs is nonparametric and the graph adjacency matrix W induces
a nonparametric prior about the co-labeling decisions. Thus, we model a Gaussian
Process (GP)[18] to define the nonparametric prior for the target label prediction
functions. Suppose that a random binary label prediction function g : X → R is
relaxed from the hard binary output {+1,−1}. Let the vectorial representation g ∈
Rn be drawn from a GP with the zero mean and the covariance W (note that we use
it as W + 10−6 ∗ I to guarantee the invertibility), which is sensible because Wij > 0
implies that gi and gj are very likely to take on the same sign, i.e., E(gigj) > 0.

Through the one-against-all strategy, we have C binary-class problems at hand,
each of which corresponds to a co-labeling constraint set Θc since Θc perfectly
separates the class Ωc from the others in the labeled subset. For brevity, we denote
each binary-class task as t(Θc), and we would expect gi = 1 for xi ∈ Ωc and gi = −1
for xi /∈ Ωc, respectively. In addition, we derive gi = gj according to the must-link
(xi,xj)M and gi = −gj to the cannot-link (xi,xj)C , respectively. As such, we

model the likelihood of Θc with respect to g =

[
g`

gυ

]
(g` ∈ Rl refers to the labeled
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part and gυ ∈ Rn−l to the unlabeled part) as

P(Θc|g) ∝ exp


−

∑
yi=yj

(gi − gj)2

2ε2
−

∑

yi 6=yj
yi=c or yj=c

(gi + gj)2

2ε2




= exp
(
−1

2
g>` Scg`

)
, (2)

where Sc ∈ Rl×l with entries being

Sc
ij =

2
ε2





l − 1, i = j and yi = c,

lc + lb − 1, i = j and yi = b 6= c,

−1, i 6= j and yi = yj ,

1, i 6= j and yi 6= yj and (yi or yj) = c,

0, otherwise.

(3)

Given the GP prior g ∼ N (0,W ), the posterior P(g|Θc) is derived by using the
Bayes’ law as follows:

P(g|Θc) ∝ P(Θc|g)P(g)

∝ exp
(
−1

2
g>` Scg`

)
exp

(
−1

2
g>W−1g

)

= exp
(
−1

2
g>(Kc)−1g

)
, (4)

where Kc ∈ Rn×n is the covariance of the derived posterior process g|Θc which is still
a GP with the zero mean. The following theorem gives the exact form of Kc.

Theorem 3.1. If we write W in the blockwise form

[
W`` W`υ

Wυ` Wυυ

]
according

to the partition of the labeled and unlabeled examples, then

Kc =

[
W`` −W``T

cW`` W`υ −W``T
cW`υ

Wυ` −Wυ`T
cW`` Wυυ −Wυ`T

cW`υ

]
, (5)

where T c = (I + ScW``)−1Sc ∈ Rl×l.
proof: Taking Eq. (4) into account, we can deduce Kc by applying matrix

inversion lemma and block matrix inversion, that is,

Kc =

([
Sc 0

0 0

]
+ W−1

)−1

= W −W

(
I +

[
Sc 0

0 0

]
W

)−1 [
Sc 0

0 0

]
W

= W −W

[
I + ScW`` ScW`υ

0 I

]−1 [
ScW`` ScW`υ

0 0

]
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= W −W

[
(I + ScW``)−1ScW`` (I + ScW``)−1ScW`υ

0 0

]

= W −W

[
T cW`` T cW`υ

0 0

]
,

which immediately leads to Eq. (5). ¤
We exploit this covariance Kc of the derived posterior GP g|Θc as the class-

specific affinity (i.e., adjacency) matrix for dealing with the task t(Θc). It is not
difficult to prove the positive definiteness of the matrix Kc, so Kc can be regarded
as a valid kernel matrix. Different from the initial affinity matrix W , the class-
specific affinity matrix Kc includes both positive and negative similarities, which are
visualized by the illustrative example in Fig. 2. Naturally, the learned affinity matrix
Kc specifies a novel graph Gc that is also class-specific. We call the edges in Gc taking
positive similarities as positive edges, and the edges taking negative similarities (i.e.,
dissimilarities) as negative edges.

x1

x2

x3

x4

x5

Figure 2. An example of learning class-specific graphs. The left two subfigures show the

initial 1-NN graph and the associated affinity matrix W . Given a must-link between x2

and x3 and a cannot-link between x3 and x4, the right two subfigures show the learned

class-specific affinity matrix K which specifies a novel graph of positive and negative edges.

Different colors for data points represent different class labels. Blue edges (positive edges)

take similarities (positive edge weights), while red edges (negative edges) take

dissimilarities (negative edge weights).

Let us revisit Eq. (5), in which the matrix Sc encodes the co-labeling constraints
of the set Θc imposed on the labeled block, and then diffuses the co-labeling cues to
the rest of the blocks of the initial affinity matrix W . Therefore, Kc may be thought
of as the response of W after absorbing the co-labeling cues offered by Θc. We simply
set the parameter ε in Sc, displayed in Eq. (3), to a very small value such as 10−3

so as to make the co-labeling constraints as hard as possible. When more than two
classes are confronted, we have to learn C affinity matrices. When C = 2, we only
need to learn a single affinity matrix.

3.3 Bidirectional label propagation criterion

Over the learned class-specific graph Gc(Kc), we propose a Bidirectional Label
Propagation (BLP) criterion that takes advantage of both similarities and
dissimilarities, embedded into Kc, among the given n examples:

Q(f c) =
1
2

∑

Kc
ij>0

(fic − fjc)2Kc
ij −

1
2

∑

Kc
ij<0

(fic + fjc)2Kc
ij
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= Incons+(f c) + Cons−(f c), (6)

where f c = [f1c, · · · , fnc]> ∈ Rn saves the predicted soft labels of the examples in
X for the task t(Θc), Incons+ measures the labeling inconsistency along the positive
edges of the graph Gc, and Cons− measures the labeling consistency along the negative
edges. Clearly, Q(f c) > 0 always holds for arbitrary f c. The optimal f c must
minimize the BLP criterion in Eq. (6).

Let us compute the n× n matrix

Bc = Dc −Kc, (7)

where Dc ∈ Rn×n is a diagonal matrix whose diagonal entries are Dc
ii =

∑n
j=1 |Kc

ij |.
Theorem 3.2. The proposed bidirectional label propagation criterion

constitutes a convex quadratic function

Q(f c) = f>c Bcf c, (8)

where Bc is positive semidefinite.
proof: We deduce Q(f c) as follows

Q(f c) =
n∑

i=1

f2
ic

∑

j,Kc
ij>0

Kc
ij −

∑

Kc
ij>0

ficfjcK
c
ij

−
n∑

i=1

f2
ic

∑

j,Kc
ij<0

Kc
ij −

∑

Kc
ij<0

ficfjcK
c
ij

=
n∑

i=1

f2
ic

n∑

j=1

|Kc
ij | −

n∑

i=1

n∑

j=1

ficfjcK
c
ij

= f>c (Dc −Kc) f c

= f>c Bcf c,

which indicates thatQ(f c) is quadratic in terms of f c. Additionally, becauseQ(f c) >
0 for any f c, Q is convex and accordingly Bc is a positive semidefinite matrix. ¤

By utilizing Eq. (8), we can establish the following constrained regularization
framework to execute bidirectional label propagation for the SSL task t(Θc):

min
f c

f>c Bcf c + ξ‖f c‖2

s.t. f `,c = Y.c (9)

in which f c =

[
f `,c

fυ,c

]
, Y.c =




Y1c

· · ·
Ylc


 ∈ Rl, and ξ > 0 is the regularization parameter.

We predefine Yic = 1 if yi = c and Yic = −1 otherwise. With simple algebra, Eq. (9)
reduces to

min
fυ,c

Q1(fυ,c) = f>υ,c(B
c
υυ + ξI)fυ,c + 2f>υ,cB

c
υ`Y.c, (10)
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where Bc
υυ and Bc

υ` are sub-matrices of Bc =

[
Bc

`` Bc
`υ

Bc
υ` Bc

υυ

]
. We let ∂Q1/∂fυ,c = 0

and then obtain the globally optimal solution to Eq. (9) as follows

f∗υ,c = −(Bc
υυ + ξI)−1Bc

υ`Y.c. (11)

3.4 Inductive inference

It is worthwhile to state that truly semi-supervised learning, e.g., Ref. [19] and
Ref. [2], should handle training examples in availability as well as unseen test
examples. Generally speaking, transductive learning such as Refs. [24,26] can only
infer the labels of the training examples and fails to infer the labels of any novel
examples beyond the training dataset. Reference [7] followed the same label
propagation criteria presented in Refs. [24,26] and developed a nonparametric
inductive inference scheme for predicting the labels of any out-of-sample examples.

In this paper, we desire to investigate an inductive inference scheme which can
yield an out-of-sample extension of the proposed BLP criterion. Specifically, we not
only conduct induction for the label y(z) of a novel example z ∈ Rd but also perform
induction for the affinities Kc(z,xi) = Kc

zi between the novel example z and n

existing training examples {xi}n
i=1.

Above all, we define the initial affinity W (z,xi) that we rewrite as Wzi for
brevity:

Wzi =

{
exp

(
−d(z,xi)

2

σ2

)
, xi ∈ N(z)

0, otherwise
(12)

We also set Wzz = 1 in accordance with Wii = 1.

Theorem 3.3 Let Wz. = [Wz1, · · · ,Wzl, · · · ,Wzn] = [Wz,`,Wz,υ], then

Kc
z. = [Kc

z1, · · · ,Kc
zl, · · · ,Kc

zn]

= Wz. −Wz,`T
cW`., (13)

where W`. = [W``,W`υ] ∈ Rl×n.
proof: We can assume z = xn+1 and derive the same form as Eq. (5). Let

substitute

[
Kc Kc

z.
>

Kc
z. Kc

zz

]
for Kc,

[
Wυ`

Wz,`

]
for Wυ`, and

[
Wυυ W>

z,υ

Wz,υ 1

]
for Wυυ in Eq. (5),

respectively. Then we can obtain Kc
z. as formulated in Eq. (13) by equating two sides

of Eq. (5). ¤
So far, we can apply Theorem 3.3 and the same BLP criterion in the transductive

learning setting to infer the label of any out-of-sample example z. Specifically, we
suppose a pseudo label fzc for z in the task t(Θc), which is solved through minimizing
the following cost function

Q2(fzc) =
1
2

∑

Kc
zj>0

(fzc − fjc)2Kc
zj −

1
2

∑

Kc
zj<0

(fzc + fjc)2Kc
zj . (14)

Let ∂Q2/∂fzc = 0, fjc = Yjc for 1 6 j 6 l, and fjc = f∗jc for j > l + 1. We thus
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Algorithm 1 Bidirectional Label Propagation (BLP)
Step 1: Construct a k-NN graph G(V, E, W ) upon X = {x1, · · · , xl, · · · , xn} ⊂ Rd. The

first l examples are labeled as yi ∈ {1, · · · , C}. Use Eq. (1) to set W . Set a class indicator

matrix Y ∈ Rl×C where Yic = 1 if yi = c and Yic = −1 otherwise.

Step 2:

Transductive Inference:

for c = 1, 2, · · · , C do

use eqs. (3)(5) to compute Kc from W ,

apply Eq. (11) to compute f∗υ,c with Kc and Y.c,

.

F ∗υ = [f∗υ,1, · · · , f∗υ,C ].

Inductive Inference:

for c = 1, 2, · · · , C do

use eqs. (12)(13) to compute Kc
z.,

apply Eq. (15) to compute f∗zc with Kc
z., Y.c, and f∗υ,c,

.

F ∗z = [f∗z1, · · · , f∗zC ].

Step 3: For an unlabeled example xi (l + 1 6 i 6 n), predict its labels by

y(xi) = arg max16c6C [F ∗u ]i−l,c. For a novel test example z, predict its label by

y(z) = arg max16c6C [F ∗z ]1,c.

accomplish the optimal solution to Eq. (14) as follows

f∗zc =

∑l
j=1 Kc

zjYjc +
∑n

j=l+1 Kc
zjf

∗
jc∑n

j=1 |Kc
zj |

. (15)

Note that the diagonal entries Kc
ii (1 6 i 6 n) do not influence the solution f∗υ,c

in Eq. (11) because they are counteracted in calculating the matrix Bc. Moreover,
Kc

zz is not involved in the solution f∗zc in Eq. (15). Consequently, we can ignore the
diagonal elements of the learned class-specific affinity (or kernel) matrix Kc.

3.5 Algorithm

In the sequel, we give the whole algorithmic framework for multi-class semi-
supervised classification in Algorithm 1. We still call the algorithm Bidirectional
Label Propagation (BLP). Since BLP is able to cope with both training and testing
data, it is truly semi-supervised, i.e., not only transductive but also inductive. For
binary-class problems (C = 2), only once graph learning together with once label
propagation is required.

4 Experiments

In this section, we evaluate the proposed novel graph-based SSL algorithm
bidirectional label propagation (BLP), which integrates class-specific graph learning
and multi-class label propagation, on one toy problem and two real-world datasets.
We compare BLP with the state-of-the-art graph-based SSL algorithms including
Local and Global Consistency (LGC)[24], Quadratic Criterion (QC)[3], Gaussian
Fields and Harmonic Functions (GFHF) plus the postprocessing operation Class
Mass Normalization (CMN)[26], Laplacian Regularized Least Squares (LapRLS)[2],
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and Laplacian Support Vector Machines (LapSVMs)[2], all of which can directly be
applied to multi-class problems.

To entail a fair comparison, we use Eq. (1) (adopting an empirical choice of σ

suggested in Subsection 3.1) to build the same k-NN graph for all algorithms on
each dataset. The width of the RBF kernel for LapRLS and LapSVM is set by
cross validation. In practice, GFHF often exhibits more robust performance than
LGC because of the hard labeling constraint, and CMN usually further improves
the performance of GFHF. The regularization parameters associated with LGC, QC,
LapRLS and LapSVM are tuned to the best. As an advantage, our algorithm BLP
is less sensitive to the two parameters ε and ξ. Throughout our experiments, we fix
them to 10−3 and 10−6, respectively.

4.1 Toy problem

We first conduct experiments on one synthetic dataset plotted in Fig. 3. This
dataset is Noisy Face Contour, which is composed of 266 points belonging to three
classes and 61 uniformly distributed noisy points. We do not care about the labels
of the noisy points, so we compute classification error rates only on non-noise points
whose labels are known in advance.

The existing graph-based SSL algorithms result in worse classification results as
the noisy points essentially destroy the graph structure so that labels are unnecessarily
propagated along them. Shown in Fig. 3, our algorithm BLP exhibits a fully correct
classification when only one point of each class is labeled, whereas all of the other
competing algorithms give mistakes. We do not show the visual classification results
achieved by other algorithms due to the space limit. We further show average error
rates over 100 random trials in Table 1. We test all compared algorithms with three
and six initially labeled points, respectively. BLP clearly demonstrates a substantial
advantage over all of the other algorithms whether using a 5-NN graph or a 10-NN
graph. Therefore, we can say that the proposed graph learning mechanism and the
BLP criterion are robust to noise.
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Figure 3. The semi-supervised classification result achieved by our proposed SSL

algorithm BLP on the toy problem: Noisy Face Contour.
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Table 1 Average classification error rates on the toy problem

Error Rate Toy: 3 labeled Toy: 6 labeled

(%) 5-NN 10-NN 5-NN 10-NN

Graph Graph Graph Graph

LGC 9.28±4.64 8.55±3.80 5.54±4.84 5.70±4.23

QC 10.78±4.41 9.61±3.29 6.27±5.14 6.37±4.07

GFHF 7.14±5.75 8.61±5.15 4.18±4.53 4.67±4.44

GFHF+CMN 7.14±3.75 7.94±2.67 5.04±4.00 5.51±3.74

LapRLS 6.77±5.11 8.79±5.02 4.21±4.45 5.10±4.48

LapSVM 6.65±5.39 8.40±4.81 4.22±4.44 5.08±4.43

BLP 2.22±2.41 3.81±3.06 0.19±1.06 1.86±2.57

4.2 Handwritten digit recognition

We evaluate these graph-based SSL algorithms on the USPS (test subset)
handwritten digits dataset in which each example is a 16 × 16 image and there are
ten types of digits “0, 1, 2, ..., 9” used as ten classes. There are 160 digit images in
each class at least, summing up to a total of 2007 examples. Fig. 5 shows ten
examples. We randomly choose initially labeled examples such that they contain at
least one labeled example from each class. Averaged over 20 trials, we calculate the
error rates for all referred algorithms with the number of the initially labeled
examples increasing from 20 to 100. The classification results are displayed in Fig. 4
and Table 2. Again, we observe that BLP is significantly superior to the other
compared algorithms, which demonstrates that the class-specific graph learning
scheme and the more sophisticated bidirectional label propagation technique, which
exploits both similarities and dissimilarities hidden among the input examples,
boost graph-based SSL prominently.
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Figure 4. Average error rates vs. numbers of initially labeled examples.
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Table 2 Average classification error rates on the USPS dataset

Error Rate USPS: 20 labeled USPS: 100 labeled

(%) 10-NN 20-NN 10-NN 20-NN

Graph Graph Graph Graph

LGC 36.40±5.40 33.10±5.40 19.50±1.43 17.23±1.29

QC 37.15±5.43 34.24±5.18 21.35±1.33 18.77±1.22

GFHF 60.65±7.80 57.28±7.81 25.86±3.10 22.04±2.64

GFHF+CMN 34.98±5.33 32.31±5.41 19.25±2.15 17.07±1.89

LapRLS 37.21±5.20 37.22±5.28 18.98±1.89 17.68±1.86

LapSVM 34.92±4.94 33.76±5.24 18.16±1.80 16.48±1.85

BLP 24.65±4.85 21.92±4.66 14.54±1.00 13.10±1.30

4.3 Face recognition

Now we draw our attention to the intensively studied topic, face recognition. Our
experiments are performed on a subset of 3160 facial images selected from 316 persons
in the FRGC version 2[17]. We align all these faces according to the positions of eyes
and mouth and then crop them to the fixed size of 64×72 pixels. We adopt grayscale
values of these images as facial features. Fig. 5 displays ten face image examples.

Figure 5. Examples: ten face images in the top line come from one person of the FRGC

dataset, and ten digit images in the second line come from the USPS dataset.

We randomly choose 316 ∼ 1000 images in this dataset as the initially labeled
examples, and keep the remaining examples as the unlabeled data. The chosen labeled
examples always cover the total 316 classes (i.e., persons).

By repeating the recognition process 20 times, we plot average recognition rates
of five compared SSL algorithms using the same 6-NN graph according to the
expanding initially labeled data size in Fig. 6. The results in Fig. 6 further confirm
the effectiveness of the proposed BLP algorithm which outperforms all of the other
compared SSL algorithms.

We show that for this high-dimensional multi-class classification task, both of the
proposed graph learning procedure (i.e., class-specific affinity matrix learning) and
the ingenious label propagation technique that works along both positive and negative
edge directions exhibit substantial robustness on this challenging multi-class problem,
whereas the other SSL algorithms either suffer from non-trivial high-dimensional noise
or are vulnerable to multiple classes.
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Figure 6. Average recognition rates vs. numbers of initially labeled examples.

5 Conclusion and Discussion

Graph-based methods form a main category of state-of-the-art semi-supervised
learning, offering flexibility and easy implementation for broad applications. To this
end, we follow previous methods and present a novel graph-theoretical
semi-supervised learning framework. In this framework, we first incorporate initial
sparse label information to learn discriminative graphs that are specific to each class
and reveal the dissimilarities inherent among the given examples. By simultaneously
leveraging similarities and dissimilarities, we then develop a novel label propagation
technique to propagate labels along positive and negative edges that the learned
graphs produce. Our proposed bidirectional label propagation method can ensure
consistent labelings along the positive edges and inconsistent labelings along the
negative edges. We have shown through the experiments on synthetic and real-world
datasets that our approach is robust against noise present classification problems
and effective for multi-class classification tasks.

In our future research plan, we intend to study learning discriminative graphs for
wider applications such as learning semantic-aware graphs for web image reranking[14]

and learning large-scale graphs for web-scale data collections[15]. On the theory side,
we also pursue to investigate the potential connections between graph learning and
hash code generation as advocated by Ref. [16], or manifold methods such as manifold
ranking[22] and manifold discovery[23].
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