首页 | 官方网站   微博 | 高级检索  
     


3D Aluminum Hybrid Plasmonic Nanostructures with Large Areas of Dense Hot Spots and Long‐Term Stability
Authors:Xi‐Mei Li  Ming‐Hai Bi  Lan Cui  Yu‐Zhu Zhou  Xi‐Wen Du  Shi‐Zhang Qiao  Jing Yang
Affiliation:1. Institute of New‐Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, China;2. Center for Analysis and Test, Tianjin University, Tianjin, China;3. School of Chemical Engineering, The University of Adelaide, Adelaide, SA, Australia
Abstract:Plasmonic materials possessing dense hot spots with high field enhancement over a large area are highly desirable for ultrasensitive biochemical sensing and efficient solar energy conversion; particularly those based on low‐cost noncoinage metals with high natural abundance are of considerable practical significance. Here, 3D aluminum hybrid nanostructures (3D‐Al‐HNSs) with high density of plasmonic hot spots across a large scale are fabricated via a highly efficient and scalable nonlithographic method, i.e., millisecond‐laser‐direct‐writing in liquid nitrogen. The nanosized alumina interlayer induces intense and dual plasmonic resonance couplings between adjacent Al nanoparticles with bimodal size distribution within each of the hybrid assemblies, leading to remarkably elevated localized electric fields (or hot spots) accessible to the analytes or reactants. The 3D‐stacked nanostructure substantially raises the hot spot density, giving rise to plasmon‐enhanced light harvesting from deep UV to the visible, strong enhancement of Raman signals, and a very low limit of detection outperforming reported Al nanostructures, and even comparable to the noble metals. Combined with the long‐term stability and good reproducibility, the 3D‐Al‐HNSs hold promise as a robust low‐cost plasmonic material for applications in plasmon‐enhanced spectroscopic sensing and light harvesting.
Keywords:aluminum  hot spots  hybrid nanostructures  plasmonic materials  surface‐enhanced Raman spectroscopy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号