学特征的数学地质研究

郭光裕 林卓虹

张俊岭 朱学文 丛桂新

提 要 本文主要是应用数学地质方法研究山东招掖金矿带原生金矿化地球化学特征,从而确定 金矿化的最佳地球化学标志组合,并建立原生金矿化模式及金矿体原生晕的判别模式。

关键词 原生金矿化 地球化学特征 数学地质判别

招掖金矿化带位于胶东隆起西部,沂沭大断裂东侧。出露地层以上太古一下元古界胶东 群为主,少量元古界粉子山群。胶东群主要分布在本区东、东南部;北、西、西南部有零星出露; 在中部以残留体形式分布于玲珑花岗岩中。

在区域上,胶东群构成近东西向的掖县一栖霞复背斜,发育近东西向的断裂构造。因处在 沂沭断裂活动范围内,发育一套北北东向、北东向、北东东向断裂构造带。它们控制了金矿床 的生成和分布。

玲珑花岗岩出露于本区中部,分布面积最广。岩体受密集分布的北北东向、北东向断裂构 造控制,横断掖县一栖霞复背斜,沿北北东向分布。在该区东北部、北部及西南部分布有郭家 岭石英二长岩、滦家河花岗闪长岩。三者均属中生代岩浆活动产物。

野外及室内地质研究结果表明,金矿床属中温热液充填型,包括含金石英脉和含金蚀变破 碎花岗岩两种类型。它们之间的差异是同源同因含金热液在迁移演化过程中所处裂隙性质及 相应的物理化学环境不同造成的。

通过地质学、地球化学、数学地质学研究该区金矿床形成的地质概念模型如下①:

1. 金矿床形成的前导,胶东群地层作为矿源层奠定了物质基础;

 中生代沂沭深大断裂不断活动,使本区发育一套北东向,北北东向断裂裂隙,成为地壳 脆弱带。导致酸性岩浆活动、冲击、侵漫并融蚀围岩,形成花岗岩类,促进胶东群地层中金的活 化转移;

 花岗岩成岩以后,断裂构造多次活动,促使金的进一步迁移、分异富集,并为金的沉淀 提供了有利条件和空间,导致金富集成矿。

本区控制热液活动的断裂构造活动,大体上分为两期:

第一期构造活动主应力方向为北西——南东向。在区域上形成北东向为主的断裂构造带。带内发育密集的、互相平行的压性、压扭性裂隙。伴有挤压片理、构造透镜体、压碎岩、糜 棱岩、断层泥等。与此同时,热液(石英包体测试温度为 360~420℃,PH 为 7.23)沿裂隙迁移, 并以扩散为主的交代方式使花岗岩绢云母化。硅化(带入钾、硅;带出钠、钙、镁、铁、铝)。从而 沿断裂带发育绢岩和绢英岩化岩石。但只有轻微金矿化。

1989.3

①林卓虹等,1987,山东招掖金矿化带矿床形成地质概念模型初步研究,内部

第二期构造活动主应力为北西西一南东东向。在区域上形成北北东向为主的断裂构造带。金矿化主要受该期构造活动控制。热液(石英包体测试温度为 200~320 C, PH 为 6.16~ 6.61)以流渗为主的沉淀方式充填裂隙。由于活动具有脉动继承和由强变弱的特点,与之相伴随,金矿化也是多阶段的。

第一阶段构造裂隙总体为压扭性性,局部为张扭性。与之相伴随,发生第一阶段金矿化, 在张扭性裂隙中,充填含金黄铁矿一乳白色石英脉。在压扭性裂隙中,充填细脉状、网脉状石 英、黄铁矿。石英脉中有时见有绢英岩角砾。第一阶段金矿化比较普遍,但矿化强度很小,大 多数矿石不具工业意义。本阶段石英包体测试温度为 300℃(均一法为主,参改爆裂法):

第二阶段构造裂隙总体仍为压扭性,但活动强度比第一阶段小。裂隙只在第一阶段构造 裂隙的局部地段产生。与之相伴随,发生第二阶段金矿化。在张扭性裂隙中充填含金灰白色 石英一黄铁矿脉。在压扭性裂隙中,充填细脉状、网脉状黄铁矿、石英。该阶段是最重要的金 矿化阶段,大多数矿石具工业意义。石英测试温度为 260~320℃。

第三阶段构造裂隙比第二阶段更弱,只是在局部空间上形成张扭性裂隙。与之相伴随,发 生第三阶段金矿化。在第一、二矿化阶段产物分布的某些空间上形成的裂隙中,充填含金石英 (有时为方解石)一多金属硫化物细脉。该阶段是另一个重要的金矿化阶段,矿石的一部分具 工业意义。石英包体测试温度为 200~230℃。

上述两个构造活动期形成的蚀变岩带和金矿化带,大体上发育在相同的空间上。与矿化 有关的三个构造活动阶段,金的富集部位也处于相同的空间上。这种空间分布规律给金矿床 的寻找工作带来方便。

一、金的原生矿化特征一金含量统计分布特征研究

统计分布特征是地质体最重要的数学特征之一。因不同成因地质体,其数据统计分布特 征不同,往往通过分布规律的研究来探讨地质体的成因。地质作用的长期性、复杂性,使地质体的形成经历了多个阶段,是多种成因、多次作用迭加的产物。其观测数据往往表现为多总体 迭加的混合型分布特征。

为了研究本区金的原生矿化特征和其成因特点,首先应用经典统计学的基本理论和方法 查明金含量的分布特征。为此目的,在玲珑、新城、焦家、灵山沟等矿区,收集矿石样金化学分 析数据 1010 个,含量变化范围< 0.15~215g/t。对具进行自然对数变换,变换后的数据在< -1.8971~5.3706 间变化。

金的统计分布特征研究,在概率纸上进行。具体作法是,以 0.8276 为分组间隔,将 1010 个样品金含量数据的对数值分为 10 组,计算各组的频数、频率和累积频率,以累积频率作为总 体累积概率的估计值,并表示在正态概率纸上(图 1)。不难看出,累积概率在正态概率纸上表 现为一条有明显拐点的曲线。因此判断它是一个混合分布总体。应用 A.J. 辛克莱 (A.J. sinclair)的方法⁽¹⁾,把混合分布总体筛分成三个对数正态分布总体。它们的密度函数 为: 的。

 图 1. 金品位混合总体筛分结果图
 W 混合分布总体累积概率理论分布曲线
 X 混合分布总体累积概率实测值
 L II. III 筛分出的单一总体累积概率分布曲线
 Fig. 1. Plot showing screening results of Au-grade total population

$$P_{II}(U) = \frac{1}{1.175\sqrt{2\pi}} EXP[-\frac{1}{2}(\frac{u-2.525}{1.175})^{2}]$$

$$P_{II}(U) = \frac{1}{1.5\sqrt{2\pi}} EXP[-\frac{1}{2}(\frac{u-0.65}{1.5})^{2}]$$

$$P_{III}(U) = \frac{1}{1.0875\sqrt{2\pi}} EXP[-\frac{1}{2}(\frac{u+0.4813}{1.0875})^{2}] (u = \ln x)$$
图 2 描绘了三个对数正态分布总体的密度函数曲线。

表1列出了不同信息水平各单一分布总体和混合分布 总体的理论值、实测值以及理论值和实测值间的相对误差 (平均相对误差为-0.0235),进一步对混合分布总体累积 概率实测值和理论值进行 t 检验、F 检验,得 t = 0.0361,F = 1.0110,检验临界值 t_{0.05}(18) = 2.101 > 0.0361,F_{0.05} (9,9) = 3.18 > 1.0110,表明混合分布总体累积概率理论 值和实测值之间差异极小。筛分出的三个分布总体是客观

在地质概念模型指导下,对筛分出的各总体进一步研 究发现:

总体 I 在混合分布总体中占 40.13%,主要由金含量> 7.39g/t 的样品组成 (> 7.93g/t 的样品在总体 I 中占 86.15%)。样品特征为灰白色石英一黄铁矿矿物组合,其 中石英为它形晶结构,由于含有粉尘状黄铁矿而成灰白色、 烟灰色;黄铁矿有两个世代,第一世代黄铁矿具中粗粒全自 形晶结构,第二世代黄铁矿为细晶糖粒状。金以银金矿及 少量自然金形式赋存于黄铁矿、磁黄铁矿、石英晶体、晶隙

和裂隙中。属第二阶段金矿化产物。金含量一般 1.19~130.97g/t,最高可达 424.11g/t。金 品位 3g/t 以上的样品在该阶段矿化中占 88.76%,在整个矿化期中占 35.62%。本阶段提供 的金资源量占矿床资源总量的 75.52%,是金最重要的成矿阶段。

总体 II 在混合分布总体中占 21.18%。样品特征为石英(方解石)一多金属硫化物组合。 主要金属矿物为中粒全自形晶结构的黄铁矿,次为黄铜矿、方铅矿、闪锌矿,偶见斑铜矿、磁黄 铁矿、斜方辉铅铋矿、毒砂、辉铋矿等。脉石矿物以石英为主,局部地段发育方解石。金主要以 银金矿和少量金银矿形式赋存于上述矿物的晶体、晶隙、裂隙中。属第三阶段金矿化产物。金 含量一般 0.1~38.47g/t,最高达 172.43g/t。金品位 3g/t 以上的样品在该阶段矿化中占 38.24%,在整个矿化期中占 8.10%。本阶段提供的金资源量占矿床金资源总量的 17.4%。

应 总体 Ⅲ 在混合分布总体中占 38.69%,主要由金含量< 0.75g/t 的样品组成 (< 0.75g/t 的样品在总体 Ⅲ 中占 76.68%)。样品特征是含少量黄铁矿的乳白色石英。石英呈半自形晶结构,有时可见晶簇,黄铁矿中粗粒,金自形晶结构,呈斑点状,斑块状分布于石英脉中。金呈银金 矿和少量自然金赋存于黄铁矿、石英晶体和晶隙中,但富集程度低,属第一阶段金矿化产物。

图 2 混合分布和单一分布总体密度函数曲线

W-混合分布总体密度函数曲线

1、11、111—各单一分布总体密度函数曲线

1'、11'、11'一各单一分布总体在混合分布总体中的密度函数曲线

Fig. 2. Density function curve of the mixed and single distribution population

金累积概率筛分结果表

表 1

Table 1. Screening results of cumulative probability of Au-grade

	分											
项目	1		2	3	4	5	6	7	. 8	9	10	≥ 3 g /t
组	中值 8/t	138.56	74. 43	32. 53	14.22	6.22	2.72	1.19	0.52	0. 23	0.075	-
总体⊥累	理论值	2.03	6.43	20.75	45.62	72.37	90.29	97.74	99.66	99.97	100.00	88.76
积概率%	在混合总体中的值	0.81	2.58	8.33	18.31	29.04	36.23	39.22	39.99	40.12	40.13	35.62
总体Ⅱ累	理论值	0.21	0.73	2.94	9.09	21.63	40.63	62.49	80.78	92.25	98.80	38.25
积概率%	在混合总体中的值	0.04	0.15	0.62	1.93	4.58	8.61	13.29	17.11	19.54	20. 82	8.10
总体 Ш 累	理论值	0.00	0.00	0.09	0.19	1.70	8.69	27.43	56.36	82.15	97.38	7.32
积概率%	在混合总体中的值	0.00	0.00	0.03	0.07	0.66	3.36	10.61	21.81	31.78	37.68	2.83
混合.	总体累积概率理 伦值 f (%)	0.86	2. 73	8. 98	20. 31	, 34. 28	48. 20	63.07	78. 91	91. 44	98.63	46.55
福合》 [1] 混合》 [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	总体累积概率实 值 f ^米 (%)	0. 89	2. 47	8.51	20. 29	33. 36	44.65	60.69	79.40	91.18	99. 99	-
相对证	吴差 $e = \frac{f \times - f}{f}$	0. 0349	0952	0.0523	-0.0010	-0. 0268	-0. 0737	-0. 0377	0.0062	-0. 0028	0.0138	-

金含量一般 0.07~5.44g/t, 最高 16.14g/t。金品位 3g/t 以上的样品在该阶段矿化中占 7.32%, 在整个矿化期中占 2.33%。本阶段提供的金源源量占矿床资源总量的 6.08%。

综上所述,第Ⅰ、Ⅱ分布总体表征第二、第三金矿化阶段,是招掖金矿化带中两个最主要的 成矿阶段。

地球化学标志	相关系数	矩	阵	

表 2

元素	Au	Ag	Cu	Pb	Zn	Мо	As	Bi	w	Te	Se
Au	1	0.5675	0.3840	0.1313	0. 1299	0.0447	0.1125	0.8675	0. 2293	0.8461	-0.1654
Ag		1	0. 4268	0. 4264	0. 1212	-0.0238	0.3562	0.4963	0. 3297	0. 4039	-0.0400
Cu			1	-0.0415	-0.0083	0. 0388	0.1895	0.2613	0.1559	0.1827	-0.2472
Pb				1	-0.0051	-0.0038	0.2983	0.1949	0.2249	-0.0102	0.1003
Zn					1	0.0247	-0.0360	-0.1889	-0.0726	- 0. 1673	0.0067
Мо						1	0.0194	-0.0297	-0.0775	-0.0429	0.0690
As							1	0.1781	0.2791	0.0321	-0. 0443
Bi								1	0.1579	0.9352	-0.1639
W									1	0.0961	-0.0769
Te										1	-0.1348
Se											1

Table 2. Correlative matrix of geochemical markers

方差极大正交旋转因子载荷矩阵

表3

Table 3.	Orthogonal	rotary	factor	load	matrix	with	maximum	variance

主因子元素	1	Ш	Ш	IV	v	VI	VII
Au	0.9639	-0.0738	0. 2151	-0.0173	0.0138	-0.0487	0. 1301
Ag	0.5638	-0. 5971	0. 4231	-0.164	-0. 3268	0.1068	0.2512
Cu	0.2113	-0.0309	0.9646	0. 0349	-0. 0314	-0.1273	0. 0741
Pb	0.1335	-0.9239	-0.2905	0.0124	-0.1161	0.1044	0.1402
Zn	-0.1356	0.0105	0.0263	-0.0173	-0.9889	-0. 0189	-0.0467
Мо	-0.0273	-0.0051	0. 0282	0.9978	0.0169	0.330	-0. 0389
As	-0.0344	- 0. 8895	0. 3893	-0.0023	0. 1985	-0.0968	0.0855
Bi	0.9763	-0.1596	0.0824	-0.0048	0. 1032	-0. 0806	0. 0189
w	0.0893	-0.1760	0.0791	-0.0416	0.0456	-0.0396	0.9744
Te	0.9926	0.0637	0.0206	-0.0203	-0. 0479	-0. 0039	-0.0039
Se	-0.1054	-0. 0267	-0.1089	0. 0344	0.0153	0. 9867	-0. 0364
方差贡献	3, 5465	1, 6264	1, 2017	1,0448	1, 0378	0,7519	0.7121

二、金矿化的最佳地球化学标志组合

为了确定金矿化地球化学标志及其组合,对焦家、新城、灵山沟三个金矿床77个矿石样品

	Table 4. Reference constitution matrix of promax tilt rotary $(k = 3)$									
结 构 元素	I	II	ш	IV	v	VI	VII			
Au	0.9916	-0.1837	0. 3024	-0.0828	0.0662	0. 2205	0.2130			
Ag	0.7195	-0.7392	0.5093	0. 1991	-0.3900	0.5663	0. 4035			
Cu	0.3517	-0.3030	0. 9825	0.0651	-0.0601	0.8546	0.1418			
Рb	0.2173	-0.8349	-0. 1955	0.1342	-0.2219	-0.0657	0.2785			
Zn	-0.1241	-0. 0338	0. 0336	0.5606	-0.9710	0.0656	-0.0123			
Мо	-0.0398	-0.0102	0. 0277	0.8043	0.1664	0.0632	-0.0568			
As	0. 1681	-0.9383	0. 4748	-0.0308	0.0488	0. 4489	0. 2333			
Bi	0.9867	-0. 1946	0.1550	-0.1234	0.1583	0.0638	0.1072			
W	0. 2097	-0. 3845	0. 2240	-0. 0791	-0. 0129	0. 2029	0. 9947			
Te	0.9593	0.0274	0.0873	-0.1452	0. 1729	0.0026	0. 0492			
Se	-0.1365	-0.0400	-0.3267	0.0962	-0.0464	0.2496	-0.0704			

Promax 斜旋转参考结构矩阵(K = 3)

Promax 斜旋转因子模型矩阵(K = 3) Model matrix of Promax tilt rotary factor (k = 3)

模型 V I II Ш IV VI VII 元素 0.9803 0.1029 0.1049 -0.0082 0.0184 0.0063 0.0552 Au -0.4149 0.5794 0.0091 0.0320 -0.2722 0.2236 0.0808 Ag 0.1631 0.0911 0.4440 0.0234 0.0040 0.1704 -0.0466 Cu Pb 0.1420 -1.0155-0.4594 0.0362 -0.0611 -0.1567 -0.0053Zn -0.04820.1394 0.1490 0.1615 -0.9393 -0.1334 -0.0411 -0.0046 -0.0025 0.0184 1.1052 0.6684 -0.0025 0.0137 Mo -0.1057 1.0240 0.3414 -0.0550 0.2164 -0.1935 -0.1306 As Bi 0.9949 -0.0452 0.0475 -0.0064 0.1046 -0.1347 -0.0622W 0.0146 -0.03370.0321 -0.0430 0.0668 -0.0048 0.9804 Te 1.0242 0.2139 -0.0189 -0.0189 0.0721 -0.0419 -0.0387 -0.0243 0.0672 -0.0094 0.0753 -0.0220 Se -1.7365 1.7426

Table 5.

表 5

的 Au、Ag、Cu、Pb、Zn、Mo、Bi、As、W、Te、Se 等元素化学分析数据进行相关分析、因子分析 和模糊聚类分析。表 2 列出了各元素间相关系数。当信度 α = 0.05,自由度为 75 时,检验临 界值 Yu.us (75) = 0.2239。根据各元素间相关关系,并考虑标志组合中各元素间应满足传递性 原则,可归纳出 7 种反映热液活动的地球化学标志组合:

Promax 斜旋转因子相关系数矩	车
-------------------	---

表6

	I	11	III	IV IV	v	VI	VII
1	1	-0. 2362	0. 2240	-0.0604	0. 0373	0. 1682	0. 1792
II		1	-0.3519	-0. 1204	0. 2015	-0. 4294	-0.3639
ш			1	0.0490	-0.0678	0. 8313	0. 1912
IV				1	-0. 4517	0.1327	-0.0102
v					1	-0.1482	-0.0933
VI						1	0. 1832
VII							1

Table 6. Correlative coefficient matrix of promax tilt rotary factor

Au 与其它元素间的相关系数

表7

lable. 7.	Correlat	tion of A	u to a	othetr e	lements
ladie. 7.	Correlat	non or A	ια το ι	ometr e	iement

.

矿化阶段	与金的相关系数											
	Ag	Cu	Pb	As	Bi	Te	Se	w	Zn	Мо		
646- 10A 1711	(14) [×]	(14)	(14)	(12)	(14)	(5)	(11)	(14)	(13)	(14)		
第一阶段	<u>0. 5720</u>	0. 4826	0. 2841	0.5565	0. 3094	0. 5804	0.3105	<u>0. 5733</u>	0.5070	0. 0567		
第二阶段。	(12)	(10)	(12)	(11)	(12)	(12)	(12)	/	(13)	(14)		
	0.8863	0.1532	-0. 0857	0.2043	0.8700	0.8750	0.5542	· ·	0.5070	0.0567		

※为样品数,当N=5,10,11,12,13,14,信度α=0.05时,相关系数临界值分别为0.878,0.632,0.602,0.576,0.553,0.532。

1. 金一银一钨

- 2. 金一银一铋一碲
- 3. 金一银一铜一铋
- 4. 铜一硒
- 5. 银一铅一砷一钨
- 6. 锌
- 7. 钼

第一、第二种组合分别反映了第一、第二阶段的矿化特征,其它组合则反映了多金属硫化物矿 物组合特点。

因子分析是一种降维的分析方法 [2]。把原来为数众多的、具一定相关关系的变量转换

为数目较少的由原始变量组合而成的新变量(即因子)。它更符合客观事物的内在联系,比原 始变量更能反映事物的本质。表 3、4、5、6 分别列出了正交旋转后的因子载荷矩阵、斜旋转 因子结构矩阵、斜旋转因子模型矩阵和因子相关系数矩阵。

从因子相关系数矩阵(表 6)可以看出,因子之间并不完全相互独立,表明各因子轴表征的 地质事件之间一定的成因联系。因此,用斜旋转法提炼的各个数学特征值来探讨各地质作用 间关系更接近客观实际。斜旋转因子结构矩阵表示变量与斜因子轴间的相关系数,表征元素 与地质作用间关系的密切程度。不难看出,与第一斜因子轴关系最密切的变量是 Au、Ag、Bi、 Te,其次是 Cu、Pb。它反映了金最主要的矿化阶段,即第二矿化阶段地球化学标志组合特征。 与第七斜因子轴关系最密切的变量是·Ag、W,其次是 Pb、As 和 Au。它反映了第一阶段金矿化 特征。其它几个因子则反映了含金多金属硫化物的矿物组合特征。

斜旋转因子模型矩阵表征各元素在不同地质作用中的变化性。可以看出,和第 I 斜因子 轴密切相关的 Au、Ag、Bi、Te 变化大,Cu、Pb 变化小;和第 II 斜因子轴密切相关的 Pb、As、Ag 变 化大,Cu、W 变化小;和第 III 斜因子轴密切相关的 Cu、Se、As 变化大,Au、Ag 变化小;和第 IV 斜 因子轴密切相关的 Mo 变化大,Zn 变化小;和第 V 斜子轴密切相关的 Zn 变化大,Ag 变化小;和 第 VI 斜因子轴密切相关的 Se 变化大,Au、Ag、Cu、As 变化小;和第 VII 斜因子轴密切相关的 W 变化大,Au、Ag、Pb、As 变化小。

从以上信息中可见,与金矿化密切相关的重要元素组合为:

1, Au—Ag—Bi—Te

2, Au—Ag—Cu—As—Se

Ag—Pb—As—W

3, Au—Ag—W

考虑到地质因素的不确定性,对上述数据进行了模糊聚类分析⁽³⁾。它是按照"物以类聚"的原则,对模糊集合进行客观分类的一种统计分析方法。本文应用的模糊聚类法,在分类过程中,首先建立一套基本模糊子集,通过对各子集线性模糊度和各元素在各子集中的隶属度,以及各子集间贴近度的分析,依照分类原则(要求同一类的元素间同时满足(1)自反性,(2)对称性,(3)传递性)进行分类。经计算得图 3 所示的以下 4 个分群:

第1群:包括3个模糊子集

- $\stackrel{A_1}{\sim} \{ Au, Ag, Bi \}$ $\stackrel{A_2}{\sim} \{ Au, Bi, Te \}$
- $A_{3} \{Ag,Cu\}$

元素:Au、Ag、Bi、Te、Cu

元素组合:Au—Ag—Bi

第Ⅱ群:包括3个模糊子集

 A_3 {Ag,Cu}

图 3. 临界值为 0.6 时的分群图
 「分群号及分群界线
 基本模糊集中元素连接线
 Fig. 3. Population plot (threshold = 0.6)

元素:Se、Zn、Mo

元素组合:Se

Zn

Mo

研究对象 X. 在 4 个分群中的隶属度矩阵 M*

	0 0770	0 6022	0 7609	0 4797
	0.9119	0.0923	0.7092	0.4/3/
	0.9111	0.8974	0.8077	0.3158
	0.8444	0.8205	1	0.5263
	0.4667	0.9487	0.5769	0.3685 \
	0.4000	0.2307	0.1923	0.8421
<u>M</u> * =	0.1778	0.2051	0.2692	1
	0. 4222	1	0.5384	0.1842
	1	0.6923	0.6923	0.4737
	0.4444	0.8718	0.3846	0.3158
	0. 9111	0.4615	0.6153	0.7369
	` 0.48889	0.4872	0.7692	0.8421

各分群的线性模糊度矩阵 L*

L^{*} = (0.3889 0.3654 0.4671 0.5000)⁺ 各分群间贴近度矩阵 *M**

	1	0.7442	0.7973	0.58875
$W^{*} =$		1	0.7713	0.4394
			1	0.6366

根据隶属度,线性模糊度、贴近度提供的信息,将元素做如下分群: 第一群:表征导致金矿化的热液活动

第一亚群:Au、Ag、Bi、Te、Cu

第二亚群:Au、Ag、Cu、Pb、As、Bi、W

第三亚群:Au、Ag、Cu、Bi、Se

第二群:表征不发生金矿化的热液活动

Zn, Mo, Te, Se

图 4 大开头矿段 52 号脉群 83 线地质剖面图 (据山东冶金地质三队)

Fig. 4. Geologieal section of the 83th line of No. 52 vein in Dakaitou mine

.

.

.

.

				Lable o.	characteristics of prima	ry Au-mmeranzation		
构造期	构造特征及 裂隙性质	矿化 阶段	地质特征	主要矿物	金的统计分布特征 (寄度函数)	金的数量指标	金的赋存 状态	最佳地球化学标志组合
Ţ	主应力方向 NW-SE向 NE 向为走 的断裂构造 平行密集分 布的压性裂 瞭带		以約款式銷貨人 物款式銷貨人 物款式約款 (本) 約款款 (本) 約款款 (本) 約 約 次 約 約 次 約 次 約 次 約 式 約 款式 約 式 約 款式 約 款	纲云母 石英		$(1)^{\texttt{X}} = 0.005 - 0.009g/t$ (2) = 0.0087g/t (3) = 0.0495g/t (4) = 0		
	R		以充填为主 的熟液活动 含金黄铁石 含金黄色石 英脉 秋 、 岡 脉 状 、 岡 脉 状 石 英 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	乳白色半自 形晶为主石 英 粗粒全自形 晶为主黄铁 矿	$P(u) = \frac{1}{1.0875\sqrt{2\pi}} BXP + \frac{1}{1.0875\sqrt{2\pi}} (\frac{u+0.4813}{1.0875}), (u = Lnx) (\frac{1}{15} 38.69\%)$	(1) = 0.07 - 5.44g/t $(2) = 0.62g/t$ $(3) = 16.14g/t$ $(4) = 6.08%$	银金矿赋有 于黄铁矿、 石英晶体、 晶酸中	Au-Ag-W
n	主应力方向 NWW-SEE 向 NNE 为 主 的新教构造 带 起 体 压 扭 性、局部	-	以充填为主 的 熱液 灰白 含 全 英 - 黄 新脉 状 爾 脉 状 黄 矿、石 英	灰白、坂 東 ち 石 形 英 粒 中 大 ち 形 英 粒 中 大 ち 形 変 粒 中 本 ち 衣 が 成 む 形 支 粒 中 本 ち 衣 衣 衣 む 形 支 粒 中 か 支 た 形 載 本 れ 中 本 ち 衣 で 形 載 れ 中 本 ち 衣 が で 形 載 れ 中 本 ち が ず む が ず む が ず む が ず む れ 中 一 も 影 妖 す れ 中 一 も 影 大 が む が む れ 中 一 も 晶 鉄 び で わ れ 中 二 ち 形 、 、 本 も 日 本 一 れ ち で む れ か 一 れ も た で む む で れ 日 た 一 れ ち で も 品 鉄 び で う た 一 も 品 鉄 び で う か 古 た 一 も 品 歌 び の 、 の も 二 の で う も 品 歌 び の 、 の も 二 の で う 本 う も 品 歌 び の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の の 、 の の の の の の の の の の の の の	$P(u) = \frac{1}{1.175\sqrt{2\pi}}BXP + \frac{1}{1.175\sqrt{2\pi}}(u - 2.525),$ (u = Lnx) (ch 40.13%)	(1) = 1. 19 - 130. 97g/t (2) = 12. 49g/t (3) = 424. 11g/t (4) = 76. 52 %	银金矿、自 然金及少碳、 铋金限、碳、国然、 物自然于 石 英 政 服 新 武 铁 新 武 联 和 教 歌 中	Au-Ag-Bi-Te
	<u>张</u> 作、张扭 性裂酸带	Ξ	以充填为主 (方金属 (方金属 (方金属 (方金属 (方金属) (方金属) (方金属) (方金属) (方金属) (方金属) (方金属) (方金属) (方金属) (方金属) (方金属) (方金) (方金属) (方金) (方金属) (方金) (方金) (方金) (方金) (方金) (方金) (方金) ()) () () ()) ()) ()) ())) ()) ())))	石英、方輝 石 黄銅矿、方輝 矿、み 松 ()、方 昭 大 町 ()、 方 傑 町 、 万 傑 町 、 万 輝 の 、 、 方 輝 の () 、 方 解 ず 、 万 解 ず 、 万 解 び 、 万 解 ず 、 万 解 び 、 万 解 び 、 万 ()) 、 万 ()) 、 万 ()) ()) 、 万 ()) ())	$P(u) = \frac{1}{1.50\sqrt{2\pi}}BXP + (\frac{u-0.65}{1.50}),$ (u = Lox) (15 21.18%)	(1) = 0.1 - 38.47g/t $(2) = 1.92g/t$ $(3) = 172.43g/t$ $(4) = 17.40%$	银银黄黄铜矿浓辉 金矿铁矿矿方矿、 石、石、黄铜矿、 石、石、黄铜矿、 石、石、黄铜、 石、石、黄铜、 石、 石、 石、 石、 石、 石、 石、 石、 石、 石、 石、 石、 石、	Au-Ag-Cu-As-Se-Bi Au-Ag-Pb-As-Bi-Cu-Zn-w

原生金矿化特征表 Table 8 characteristics of primary Au-mineralization

.

.

表 8

※一般含量 (2)几何平均值 (3)最高含量 (4)该阶段提供的金资源量占矿床金资源总量百分数

图 5. 玲珑 52 号脉 83 剖面矿体中心及其外围指示元素含量变化曲线

Fig. 5. Content curve of marker-elements in the centre and periphery of ore body in the 83th section, Ling long mine

52 号脉 83 剖面矿体及其侧向晕中指标元素相关系数矩阵

Table 9. Correlative coefficient matrix of mark elements in the lateral halo

of the83th section of ore body (No. 52Vein)

	Au	Ag	Bi	Te	Cu	Ръ	As	Se	Mn
Au	1	0. 8291	0.7833	0.6754	0. 6189	-0. 3781	0.9144	-0.0758	0. 3799
Ag		1	0. 9564	0.5363	0.9173	-0.1398	0.8627	-0.0661	0. 3068
Bi		· .	· 1	0. 4839	0.8972	-0.0638	0. 8082	-0.1205	0.0613
Te	,			1	0.6754	-0.3633	0.7569	0. 2054	0.1873
Cu					1	-0. 1185	0.6543	-0.3465	0.0484
Ръ						1	-0.1445	0. 4233	0. 1320
As							1	0.0883.	0. 2204
Sc				_				1	-0.1622

图 6 金、银、砷、碲、铜、锰原生晕经验模式图 Fig. 6. Empirical model of Au、Ag. As、Te、Cu and Mn Primary halo

为提炼受矿化制约,且在不同矿化阶段差异明显的地球化学标志,抽取14个表征金第一 矿化阶段(含量<0、75g/t)的样品,20个表征金第二矿化阶段(含量>7、39g/t)的样品,分别

表 9

计算了金与其它元素之间的相关系数(表7)。

由表7可以看,第一矿化阶段中与金密切相关的元素为Ag、W,第二矿化阶段中与金密切 相关的元素有Ag、Bi、Te。另外考虑了其它元素之间的相关性,如: $\gamma_{Ag,W}$ (12)=0.8324, $\gamma_{Ag,B}$ (18)=0.68874, $\gamma_{Ag,Te}$ (17)=0.5912, $\gamma_{Bi,Te}$ (18)=0.6249确定第一矿化阶段的地球化学标 志组合为Au-Ag-W;第二矿化阶段的地球化学标志组合为Au、-Ag-Bi-Te。由于各矿化 阶段在空间的紧密相依关系,第三矿化阶段中的金和第一、二阶段的金迭加在一起,无法用抽 取一部分样品进行相关分析的方法来确定其地球化学标志组合。但是,第三阶段金矿化在宏 观上的产物是石英(方解石)-多金属硫化物,不难想象,该阶段的地球化学标志组合必定是包 括 Au、Ag 在内的多金属元素组合。因此确定第三阶段金矿化地球化学标志组合为:

(1) Au—Ag—Cu—Bi—As—Se

(2) Au - Ag - Cu - Pb - As - Bi - Zn - W

其中标志元素 Zn 是根据矿物学研究成果确定的。

综合以上几种统计分析方法计算结果,结合矿床学、矿物学研究成果,划分下列与金矿化 有关的地球化学标志组合:

1. Au-Ag-Bi-Te

2. Au-Ag-Cu-Bi-As-Se

Au-Ag-Cu-Pb-As-Bi-Zn-W

3. Au—Ag—W

确定该区金矿化地球化学找矿最佳指示元素为 Au、Ag、Te、Bi、Cu、Pb、As、Se;一般指示元素为: Zn、W。(这是在现有分析资料条件下确定的,不排除有新的元素参加)。

上列地球化学标志及其组合的地质、地球化学意义在于:第一矿化阶段:沉淀乳白色石英和少量黄铁矿。少量 Au、Ag 呈银金矿及自然金赋存于黄铁矿、石英晶体、晶隙中。W 的存在形式不清楚,可能呈杂质混杂于矿石中。

第二矿化阶段:沉淀烟灰色石英和大量黄铁矿、磁黄铁矿。大量 Au、Ag 呈银金矿、自然金 形式赋存于黄铁矿、磁黄铁矿、石英晶体、晶隙、裂隙中。少量 Te、Bi 和 Au、Ag 呈金属互化物 显微包裹体混杂于银金矿或黄铁矿中。此外,可能有极少量的 Cu、Pb 呈自然金属形式混杂于 矿石中。

第三矿化阶段:沉淀黄铁矿、黄铜矿、方铅矿、闪锌矿及少量磁黄铁矿、斜方辉铅铋矿、毒砂 等多金属硫化物。相应的标志元素参加到上述矿物晶格中。Au、Ag 呈银金矿、金银矿赋在于 上述矿物晶体、晶隙、裂隙中。在矿化阶段早期,矿液温度较高,较多的 Se 进入黄铜矿晶格,类 质同象代换硫离子(共价键硫离子半经 S²⁻ = 1.74 Å;共价键硒离子半径 Se²⁻ = 1.91 Å。由 于热液中富 S,并且富含 Cu、Ag、Zn、Pb 等碱性离子,砷除形成细小毒砂外,多以铜一砷硫盐形 式(和黄铜矿同属四配位结晶结构)和黄铜矿一起形成类质同象混晶。到矿化阶段后期,热液 温度相对变低,限制了硒对硫的大量代换,黄铜矿中 Se 含量减少。Ag 和 As、Bi 一起类质同象 代换 Pb〔Ag¹⁺ + (As¹⁺, Bi¹⁺)→ 2Pb¹⁺〕,赋存于方铅矿、斜方辉铅铋矿中。值得一提的是, 闪锌矿中不但有黄铜矿固熔体,还见有银金矿呈固熔体存在。W 在该阶段中也有一定的活 动,但赋存状态不清楚。到矿化阶段晚期,除石英外,沉淀有方解石,有时在其中发现银金矿、 金银矿呈微粒状,微细脉状明金形式产出。

综上所述,把原生金矿化特征归钠于表8。

三、原生金矿化元素地球化学模型

原生金矿化指示元素及其组合的确定,为原生金矿化元素地球化学模型的建立开创了条. 件。但是,由于矿化作用的多阶段性,以及元素还受各种偶然因素的影响,金和其它指示元素 间数量关系具有不确定性。因此,要建立金和各指示元素间数量关系的数学模型,必须应用统 计分析方法,去除随机干扰,突出元素间内在联系,从而建立表征元素间互相制约、互相关联的 数学模型。回归分析是研究变量间相关关系的一种统计分析方法⁽⁴⁾,用该方法能够客观地建 立表征金和指示元素间相关关系的数学模型。

根据各元素遵从对数正态分布律这一特征模型中因变量为金含量的自然对数值,自变量 为最佳指示元素 Ag、Bi、Te、Cn 含量的自然对数值,样本大小为 77。根据最小二乘原理,模拟 线性回归方程式:

 $\mathbf{y} = \mathbf{b}_{0} + \mathbf{b}_{1}\mathbf{x}_{1} + \mathbf{b}_{2}\mathbf{x}_{2} + \cdots + \mathbf{b}_{p}\mathbf{x}_{p}$

经逐步回归优选变量,迭出 Ag、Te 两个变量,求出回归方程的回归系数为:

 $b_0 = -0.5353$

 $b_{Ag} = 1.0454$

 $b_{Te} = 0.4223$

建立线性回归模型为:

LnAu = 1.0454 Ln Ag + 0.4223LnTe - 0.5353

对此模型进行 F 检验。检验值 $F_{Ag,Te} = 58.39;$

 $F_{Ag} = 30.36$; $F_{Te} = 19.23$,当信度 $\alpha = 0.05$ 时,检验临界值 $F_{0.05}(2,74) = 3.12$; $F_{0.05}(1,74) = 3.97$ 。可见,上列模型具有显著意义。标志元素 Ag、Te 对金矿化具重要指示作用,结合各矿化阶段标志元素组合特征可见,该模型主要表征第二矿化阶段。因此,确定上列模型为该区原生金矿化元素地球化学模型。

四、金矿化地球化学原生晕

所谓"矿化"是有用组分及其伴生元素在一定空间上的富集。通常人们总是依有用组分工 业利用数量指标把上述富集分为矿体和原生晕两部分。并且通过原生晕的发现和研究来寻找 矿床。

为了研究该区金矿化地球化学原生晕,对玲珑矿田大开头矿段 52 号脉 83 剖面进行地质、

地球化学、数学地质研究^①。从图 4 可见,52 号脉所在空间发育一组北东向的,平行、密集分 布的裂隙,使 52 号脉在该处膨大发育成透镜体状矿体,长 355 米,最大宽度 13 米,产状 133°40'_63°26'。矿体中发育灰白、烟灰色石英黄铁矿脉,乳白色黄铁矿石英脉,石英一方解 石多金属硫化物脉。以及少量黄铁绢英岩、黄铁绢英岩化花岗岩。金属矿物以黄铁矿为主,少 量黄铜矿、方铅矿、闪锌矿,偶见斑铜矿。金主要以银金矿形式赋存于黄铁矿、黄铜矿晶隙、裂 隙中。脉石矿物以石英、方解石为主,少量绢云母、绿泥石。矿体围岩为似斑状黑云母花岗岩。 近矿围岩发育硅化、绢云母化、黄铁矿化、碳酸盐化、绿泥石化、钾长石化。

玲珑大开头矿段 52 号脉 83 剖面指示元素侧向矿化特征表

表10

Table 10.	Lateral marker-element	concentrations showing	Au-mineralization	characteristics at
------------------	------------------------	------------------------	-------------------	--------------------

		Dakattou do	Jinain , Lingi	ong gola min	e		
,矿化特征	指示元素浓度标志	Au	Ag	As	Те	Cu	Mn
	元素浓度(g/t) (几何平均值)	0. 47	1. 54	0.20	0.15	0	46. 9
. 矿 化特征 上盘晕 矿 体 下盘晕 指示常值距	与矿体中心浓度 的比值	0. 0576	0.2554	0. 0271	0.3192	0	0.0151
	用比值表示的平 均浓度梯度	-0. 1229	-0. 0971	-0.1268	-0.0888	-0. 1304	-0.1284
	元素浓度(g/t) (几何平均值)	. 8. 16	6. 03	7.37	0.47	25. 2	3102.7
矿体	与矿体中心浓度 的比值	1	1	1	• 1	1	1
上盈單 的比值 用比值表示的平 -0.1 均浓度梯度 -0.1 均浓度梯度 -0.1 「元素浓度(8/t) 8.1 (几何平均值) 1 「日比值表示的平 0 均浓度梯度 1 用比值表示的平 0 均浓度梯度 0 「几何平均值」 0.00 「几何平均值」 0.00 「日比值表示的平 0.00 的比值 -0.0 用比值表示的平 0.00 約浓度梯度 -0.0	0	ò	0	0	0	0	
	元素浓度(g/t) (几何平均值)	0.06	0. 88	-0.31	-0.05	2. 9	240.6
矿化特征 指示元素浓度标志 Au Ag As Te 二素浓度(g/t) (几何平均值) 0.47 1.54 0.20 0.15 与矿体中心浓度 的比值 0.0576 0.2554 0.0271 0.315 用比值表示的平 均浓度梯度 -0.1229 -0.0971 -0.1268 -0.08 ア 小液度梯度 -0.1229 -0.0971 -0.1268 -0.08 方家浓度(g/t) (几何平均值) 8.16 6.03 7.37 0.47 方矿体中心浓度 1 1 1 1 用比值表示的平 均浓度梯度 0 0 0 0 丁素浓度(g/t) (几何平均值) 0.066 0.88 -0.31 -0.07 下盘晕 元素浓度(g/t) (几何平均值) 0.0074 0.1459 -0.0426 -0.10 下盘晕 与矿体中心浓度 的比值 0.0074 0.1459 -0.0494 -0.0968 -0.10 指示元素最 低异常值距 上盘晕 1.61 3.77 1.35 4.74 低异常值距 下盘晕 10.90 13.73 3.80 3.23 矿体距流度(米) 下盘晕 10.90 13.73 <td>0.0074</td> <td>0. 1459</td> <td>-0. 0426</td> <td> 0. 1034</td> <td>0. 1151</td> <td>0.0776</td>	0.0074	0. 1459	-0. 0426	0. 1034	0. 1151	0.0776	
	-0. 1025	-0. 0512	- 0. 0533				
北三二妻具	- 上办具	1.61	3.77	1.35	4.74	2.28	1. 26
1日小儿系取 4		(8.14*)	(10.30)	(7.88)	(11.27)	(8.81)	(7.79)
成开币] 史 矿休 昭 室 (米)	下舟晏	10.90	13. 73	3.80	3.23	13.02	12.22
	m. *	(17.43)	AgAsTeCuMr 1.54 0.20 0.15 0 $46.$ 0.2554 0.0271 0.3192 0 0.01 -0.0971 -0.1268 -0.0888 -0.1304 -0.1 6.03 7.37 0.47 25.2 3102 1 1 1 1 1 0 0 0 0 0 0.88 -0.31 -0.05 2.9 $240.$ 0.1459 -0.0426 -0.1034 0.1151 0.077 -0.0494 -0.0968 -0.1025 -0.0512 -0.0 3.77 1.35 4.74 2.28 1.27 (10.30) (7.88) (11.27) (8.81) (7.77) 13.73 3.80 3.23 13.02 12.2 (20.26) (10.33) (9.76) (19.55) (18.7)	(18.75)			

the 83th section, Dakaitou domain, Linglong gold mine

*括弧中数字表征指示元素最低异常值到矿体中心的距离

矿体中金含量 2-290.6g/t, 平均浓度 8.20g/t (几何平均值)。其中, 3g/t 以上的占

①化学分析资料由山东冶金地质勘探公司物探队提供

71.43%。按金的矿化阶段统计分布模型计算,第一矿化阶段富集的金在矿体中占 13.97%, 平均浓度 2.93g/t。其中,金品位 3g/t 以上的在该矿化阶段中占 18.47%,在矿体中占 4.34%。第二矿化阶段富集的金在矿体中占 63.55%,平均浓度 13.42g/t。其中,金品位 3g/t 以上的在该阶段矿化中占 95.77%,在矿体中占 54.65%。第三矿化阶段富集的金在矿体中占 22.48%,平均浓度 3.82g/t。其中,金品位 3g/t 以上的在该阶段中占 64%,在矿体中占 12.43%。

玲珑大开头矿段 52 号脉 83 剖面指示元素垂向矿化特征表

表 11

Table. 11.	Vertical marker-element concentrations showing Au-mineralization characteristics at the 83th setion,
	•
	Dakaitou domain, Linglong gold mine.

矿化特征及 标高(M)	指 示 元 素 浓 度 标 志	Au	Ag	Te	Cu	As	Mn	
矿体上部晕 (+400)	元素浓度(g/t) (几何平均值)	0.01	0.30	0.0	16.7	0.10	_	
	与矿体中心浓度 的比值	0.0012	0. 0498	0. 9	0.6627	0. 0543		
	用比值表示的平 均浓度梯度	-0.0021	-0.0020	-0.0022	-0.0007	-0.0020		
	元素浓度(g/t) (几何平均值)	0. 22	1.34	0. 22	15.8	0.30	18.4	1
矿体上部晕 (225)		0. 0270	0. 2222	0. 4681	0. 6270	0.0407	0.0059	
	用比值表示的平 均浓度梯度	-0.0036	-0.0029	-0.0020	-0.0014	-0.0036	-0.0037	※括弧中 数字表征
	元素浓度(g/t) (几何平均值)	8.16	6. 03	0. 47	25. 2	7.37	3102.7	指示元素 最低累常
矿体中心 (+10)	与矿体中心浓 度的比值	1	1	1	1	1	1	值到矿体 的距离
	用比值表示的平 均浓度梯度	0	0	0	0	0	0	
	元素浓度(g/t) (几何平均值)	0. 05	0. 39	0.13	19.8	0.61	39.7	
矿体尾部晕 (-135)	与矿体中心浓 度的比值	0.0061	0.0647	0. 2766	0.7857	0.0828	0. 0128	
	用比值表示的平 均浓度梯度	- 0. 0058	-0.0054	-0.0042	-0.0012	-0.0053	- 0. 0057	
指示元素最低异	矿体上部晕	465.12 (290.12)	488.87 (313.87)	464.55 (289.55)	1377.25 (120.25)	491.21 (316.21)	269.61 (94.61)	
^而 直起♥ 147中心 点距离(M)	矿体下部晕	173.78	184.66	238.76 (68.76)	806.03 (631.03)	188.31	174.96 (0)	

综上所述,金的三个矿化阶段在矿体上都有较大富集。但仍以第二矿化阶段为主,第三矿 化阶段其次。

为提炼与金密切相关的一组伴生元素,对矿体及其侧向晕中的 Au、Ag、Bi、Te、Cu、Pb、As、 Se、Mn 等进行相关分析。表 9 列出了计算结果。当信度 $\alpha = 0.05$,自由度为 13 时,检验临界

值 γ_{0.05} (13) = 0.514。不难看出,Ag、Bi、Te、Cu、As 等与金密切相关。并且,除 Bi、Te 间相关系数稍低于临界值外,上列元素彼此间也密切相关。Mn 虽和其它元素间不存在线性相关关系,但它紧密伴随矿体中碳酸盐矿物富集,是一种近矿体的指示元素。因此,确定与金矿化密切相关的成晕元素于下:

Au, Ag, Bi, Te, Cn, As, Mn

各元素在矿体及其侧向晕中含量变化特征见图 5。

进行金矿化原生晕特征研究时,考虑了下列情况:

 6统地球化学理论认为,受控于裂隙的热液型矿床,有用组分及其生元素在形成侧向 晕过程中,以扩散作用为主。在形成空间晕过程中,以流渗作用为主。随原生晕各点远离矿体,各元素浓度将依一定浓度梯度降低。

由于多阶段矿化作用在空间上的迭加,还由于多种随机因素的影响,有用组分及其指示元素在空间上各点浓度具有不确定性而存在统计规律性。

鉴于以上考虑,在矿体侧向晕研究中,把包括矿体及其侧向晕在内的地球化学剖面分作矿体、矿体上盘晕、矿体下盘晕的几何平均值、分别代表各元素在矿体中心点、上盘晕中心点、下盘晕中心点的浓度。以各元素在矿体中心点的浓度为单位,分别对各元素在矿体中心点、上盘晕中心点,下盘晕中心点的浓度进行变换。分别依矿体中心点至上、下盘晕中心点的距离计算 有用组分及其伴生元素的平均浓度梯度。参考各元素异常下限值,计算各元素的异常范围。 表 10 列出了计算结果。可以看出:

1、金矿体侧向晕具有上盘晕窄,下盘晕宽的特点;

2、上盘晕中,各指示元素原生晕范围由大到小排列顺序为:Te-Ag-Cn-Au-As-Mn

相对而言, Te-Ag 组合指示向下 2.3~3.8 米处见矿, Te-Ag-Cn 组合指示向下 1.6~ 2.3 米范围见矿, Te-Ag-Cu-Au-As-Mn 组合指示向下 0~1.3 米范围见矿。

3、下盘晕中,各指示元素原生晕范围从大到小排列顺序为:

Ag-Cu-Mn-Au-As-Te

相对而言, Ag-Cu-Mn-Au 组合指示原生晕在矿体下盘 11~14 米范围内。Ag-Cu-Mn-Au-As-Te 组合指示原生晕在矿体下盘 3.3 米以内。

为研究矿体垂向晕特征,分别在(1)400米标高(上部晕),(2)225米标高(上部晕),(3) 10米标高(矿体),(4)-135米标高(下部晕)进行地球化学剖面取样分析。分别计算各剖面中 指示元素的几何平均值,代表元素在空间上的浓度。以矿体浓度为单位进行变换后,依矿体中 心点距各剖面的距离计算各元素平均浓度梯度。进一步计算各元素在矿体上部晕、矿体下部 晕中的分布范围。表 11列出了计算结果。不难看出:

1、矿体上部晕比矿体下部晕规模大,

2、上部晕中,各指示元素原生晕范围由大到小排列顺序为:Cu (Pb)—As—Ag—Au—Te— Mn

其中,Cu (Pb)组合指示向下 320~1200 米范围内见矿。Ag-As-Cu (Pb)组合指示向下 290~320 米范围内见矿。Au-Te-Ag-As-Cu (Pb)组合指示向下 95~290 米范围内见矿。 Mn-Au-Te-Ag-Cu (Pb)组合指示 0~95 米范围内见矿。 3、下部晕中,各指示元素原生晕范围由大到小排顺序为:

Cu-Te-As-Ag-Au, Mn

其中,Cu组合指示矿体在原生晕上部 64~630 米范围内。Cu一Te 组合指示矿体在原生 晕上部 13~64 米范围内。Ag-As-Te-Cu组合指示矿体在原生晕上方 0~13 米范围内。 Au 和 Mn 不形成矿体下部晕。

根据上列研究,绘制玲珑矿田大开头矿段 52 号脉 83 剖面指示元素 Au、Ag、As、Te、Cu、Mn 原生晕经验模型图(图 6)。

五、矿体上部晕和矿体下部晕判别模型

在地球化学探矿过程中,指示元素及其成晕特征确定以后,如何区分矿体上部晕和矿体下 部晕?为了解决这一问题,应用了判别分析方法⁽³⁾。

判别分析是在研究对象已知分类基础上,确定未知对象归属的一种统计分析方法。其基 本工作是根据两个已知总体的数学特征,推导出费歇准则下的二组判别模型:

 $Y = \frac{\frac{P}{\Sigma}}{\frac{\Sigma}{i=1}} CiXi$

用上列模型计算未知对象的判别函数值。根据判别临界值确定其归属。

为解决矿体上部晕和下部晕的区分问题,在 52 号脉 83 剖面上抽取 19 个已知矿体上部晕样品,11 个已知矿体下部晕样品,把它们分别看作 A、B 两个总体。以原生晕经验模型为依据,确定 Ln (Ag•As)、Ln (Au•Te)、LnCu、LnMn 为评判标志,模拟判别模型型。经计算得线性判别方程式:

 $Y = 0.0685Ln (Ag \cdot As) - 0.0182Ln (Au \cdot Te) - 0.0203LnCu - 0.1046LnMn$

判别临界值 $Y_c = -0.4960$,

检验值 F = 8.4210

当信度 α = 0.05, 第一自由度为 4, 第二自由度为 25 时, 检验临界值 F_{6.86}(4, 25) = 2.76, 表明该模型对矿体上部晕和矿体下部晕有较高的区分能力。

用判别模型对玲珑矿田和望儿山矿床的已知矿体上部晕 7 个剖面和已知矿体下部晕 5 个 剖面的 158 个样品及各剖面中不同变量几何平均值进行评判。结果,判对 149 个,判错 21 个。 按剖面计判错率为 0~35.71%,平均判错率 12.35%(表 12)。

检验结果表明,用上列判别模型区分矿体上部晕和矿体下部晕,能够得到正确的结论。

值得一提的是,根据本文提出的原生金矿床地球化学特征,特别是最佳地球化学标志组合确定的土壤地球化学综合标志及异常致矿性评判模型,已经取得了相当好的找矿效果。

	Table $12-1$. Dis	scrimination a	inalysis	of upp	er and low	er halo of the know	n ore bodies l	b (1)	_
矿脉及 原生晕 特征	样品号	判别得分	实际 归属	判别 结果	矿脉及 原生晕 特征	样品号	判别得分	实际 归属	判别 结果
	38	-0.3944	A	Α		-18	-0. 5037	В	В
}	39	-0. 4415	A	A		30	-0.6509	В	В
玲珑	-40	-0. 4910	A	A		-31	-0. 3793	В	В
52 号	41	-0.3271	A	Α		平均	-0.5883	В	В
脉	42	-0.3868	Α	Α		TC-65-17	-0. 4837	Α	Α
83 剖	43	-0. 3797	A	Ϊ A		-18	-0. 4890	Α	A
面 400	44	-0.3663	Α	Α		-19	-0.2439	Α	A
米	45	-0.2796	Α	Α	玲珑	TC-65-20	-0.3014	Α	Α
体	46	-0. 4713	A	Α	52 +	-21	-0.3341	Α	Α
部	47	-0.3084	Α	Α	47 旦	-22	-0.1340	Α	Α
晕 A	48	-0.2122	Α	Α	脉	-23	-0.2901	Α	A
	49	-0. 4940	Α	Α	65 剖	-24	-0.1928	Α	Α
	平均	-0. 3793	Α	A	面 400	-26	-0.3321	Α	A
	A-101	-0. 6011	A	В	米	-27	-0.5346	A	В
	-102	-0.3122	Α	В	体	-28	-0. 2296	Α	Α
玲珑	-103	-0. 4058	А	Α	上部	-29	-0.2240	A	Α
52号 脉83	-104	-0. 3798	Α	Α	晕 A	-30	-0. 4306	A	Α
剖面	-105	-0.4620	Α	A		-31	-0.2145	Α	Α
225 米矿	-106	-0. 3824	Α	A		-32	-0.2075	Α	Α
体上 部晕	-107	-0. 4077	A	Α		- 33	-0.3719	Α	Α
A	-108	-0. 4426.	Α	А		-34	-0. 3979	А	Α
	平 均	-0. 3849	A	A		-35 .	-0.4144	Α	Α
玲珑	ZK83-2-26	-0.6047	В	В			-0. 5349	A	В
52号 脉83	-27	-0. 5509	B	В		平 均	-0.3596	Α	A
剖面 	-28	-0. 5514	В	В		A-109	-0. 5373	A	В
米矿	-13	-0.6010	В	В	玲珑	-110	-0. 5603	А	В
部晕	-14	-0.6366	В	В	52 문	-111	0.3958	Α.	Α
В	-15	-0.5542	В	В	脉	-113	-0.3470	A	A
	29	-0. 6216	В	В	o3 剖	-111	-0.4442	Α	A
	-16	-0. 5050	<u>.</u> B	В		-115	-0.4267	А	A

已知矿体上部晕、下部晕判别分析结果表

表 12-1

已知矿体上部晕、下部晕判别分析结果表

表 12-2

Table 12-2. Discrimination analysis of upper and lower halo of the known ore bodies (2)

矿脉及 原生晕	样品号	判别得分	实际 归属	判别 结果	矿脉及 原生晕	样品号	判别得分	 实际 归属	判别 结果
行伍		0 4996			行住	774 CE 1 19	0.4541		
	A-116	-0. 4236	A	A	玲	ZK-65-1-18	-0.4541	A	
	-117	-0.3555	A	A	珑	-19	-0. 4436	A	A
	-118	-0.2427	A	A	47	-20	-0. 4778	A	A
	-119	-0.1550	A	A	号	-21	-0.4666	A	A
	-120	-0.2259	A	A	BK CC	-22	-0.5251	A	A
	-122	-0.3438	A	A	60 जेव	-23	-0.5447	A	В
	-123	- 0. 2111	Α	А	前	-24	-0. 4383	А	A
面	-124	-0.1232	Α	Α	四	-25	-0. 4205	А	A
225	-125	-0.1454	A	A	*	-26	-0. 4579	A	A
*	-126	-0. 2236	A	Α	心	-27	-0. 4576	A	A
<u></u> መ	-127	-0. 2808	A	A	体	-28	-0. 5241	A	В
体	-128	-0.2186	Α	Α	前	-29	-0. 4166	A	A
即	-130	-0.2690	Α	A	缘	-30	-0.4494	А	A
涿县	-131	-0.2374	А	A	晕	平 均	-0. 4824	A	A
A	-132	-0.3205	А	Α		ZK-65-2-11	-0.6111	В	·B
	-133	-0.2879	Α	A			-0.6500	В	В
	-134	-0. 3229	Α	A	玲珑 47号	- 37	-0.6121	В	В
	-135	-0.3032	Α	A	脉65 剖面	-38	0. 3694	В	A
	-136	-0.3601	Α	A	110 米石	—39	-0.3409	В	А
	-137	-0. 4984	A	В	体尾	-40	-0.5222	В	В
	-138	-0.3797	A -	А	暈暈	-13	-0.5507	В	В
	平均	-0. 3233	Α	Α		平均	-0.5223	В	Б
	ZK-65-2-45	-0.5387	В	В		TC-469-32	-0.6287	A	в
玲珑	46	-0.4492	В	A	玲	-33	-0. 4458	A	А
52 号	-47	-0.5346	В	В	巧化 56	-34	-0.0464	А	А
脉	-48	-0. 4055	В	A	+ 58	- 35	-0.4165	A	А
65 剖	-49	-0.5749	В	В	号脉	- 36	0. 4891	А	А
11111111111111111111111111111111111111	-50	-0. 4293	В	A	496 1201	-37	-0.1265	А	А
体星	-51	-0.6977	В	В	司面	-38	-0.5715	Α	А
部員	-52	-0.5227	В	В	370 米	39	· 0. 4184	А	А
平 1	平均	- 0. 5184	В	В		-40	-0.2756	А	А

	Table 12-3.	. Discrimin	ation ar	nalysis	of upper a	and lower known ore	bodies (3)		
矿脉及 原生晕 特征	样品号	判别得分	实际 归属	判别 结果	矿脉及 原生晕 特征	样品。号	判别得分	实际 归属	判别 结果
	TC-469-41	-0. 4469	A	Α		-39	-0.5001	Α	В
が体	-42	-0.5596	A	A	面102 米矿	-40	-0.5003	Α	В
上部	-43	-0.5212	A	A	体上 部星	-41	0. 4954	Α	Α
晕	-44	-0. 5331	A	Α	ы н	平均	-0. 4262	Α	Α
Л	平均	-0. 4260	A	A		ZK22-5-46	-0.6477	В	В
	ZK-469-5-97	-0.6226	В	В		- 47	-0.6892	В	В
74	-98	-0.6287	В	В		-48	-0.5569	В	В
<i>玲</i> 珑	-99	-0.6653	В	B		-50	-0.6480	В	В
56 +	-100	-0. 6917	В	В		-51	0.5770	В	В
58 모	-101	0. 6889	В	В	望	-52	-0.7078	В	В
脉	-102	-0.6602	В	В	ル山 山 1-1 号脉 22	-53	-0.6848	В	В
469 剖		-0. 8367	В	В		54	-0.7706	В	В
面 一120	-104	-0.5191	В	В		- 55	-0.7181	В	В
至	-105	-0.6587	В	В	剖	-56	-0.7566	В	В
100 米	-106	-0.6899		В	В				
矿体	-107	-0.6883	В	A A Fat A A m102 A A m102 A A mail for the left of	-0.5881	В	В		
下。	-108	-0.7182	В	В	体下	- 59	-0. 5204	В	В
晕	-109	-0.6910	В	В	部員	-60	-0.5887	В	В
Ъ	-110	-0. 1043	В	• B	军 B	-61	-0.5289	В	в
	平均	-0. 6831	В	В		-62	-0. 7186	В	В
	22-35	-0. 3302	Α	Α		-63	-0.5693	В	В
望儿 山 1-1	-36	-0.8639	A	A		-64	-0.5094	В	В
号脉	-37	-0.8055	A	Α		65	-0.6020	В	В
44 D J	-38	-0. 4880	А	Α		平均	-0.6076	В	В

已知矿体上部晕、下部晕判别分析结果表

表 12-3

参考文献

(1) A.J·辛克莱著;《概率图在矿床勘探中的应用》,地质出版社,1981

〔2〕王学仁,《地质数据的多变量统计分析》,科学出版社,1982。

〔3〕郭光裕等,地质分类中一种新的模糊聚类方法,地质找矿论丛,1(4)1986,61-70。

〔4〕赵鹏大等,《矿床统计予测》地质出版社,1983。

〔5〕于崇文等,《数学地质的方法与应用》,冶金工业出版社,1980。

GEOMATHEMATICAL STUDY ON THE GEOCHEMICAL CHARACTERISECS OF THE PRIMARY AU-MINERALIZATION IN THE ZHAO-YE METALLOGENTIC BELT, SHANDONG PROVINCE

Guo Guangyu Lin Zuohong Zhang Junling Zhu Xuewen Cong Guixin

Abstract

Medium-hydrothermal-filling metallogenic model has been established for the Au-deposits located in the Zhao-Ye ore belt. Movement of hydrothermal fluid is controled by fractures. Under guidence of such an idea, principles and methods of classical statistics is applied to make clear of the gold distribution pattern. The results reveal a mixed distrbution population. Through sceening appear three sub-populations corresponding respectively to the three Au-mineralization stages. On the further study of statistical characteristics of the indivedual population associations of geochemical indecator are determined by correlation analysis, factor analysis and fuzzy grouping analysis: 1. Au-Ag-Bi-Te; 2. Au-Ag-Cu-Bi-As-Se; Au-Ag-Cu-Pb-As-Bi-Zn-W; 3. Au-Ag-W. And Au, Ag, Te, Bi, Cu, Pb, As, Se, are the best ore-searching indicators. LnAu = 1.0454 LnAg + 0.4223LnTe-0.5353, the element geochemical model of primary Au-mineralization is established by regression analysis. Based on the primary mineralization characteristics discriminant analysis is applied to the establisment of the model of $Y = 0.0685 Ln (Ag \cdot As) -0.018_2 Ln (Au \cdot Te) -0.0203 Ln Cu-0.1046 Ln Mn$ which can tell the upper helo from the lower helo of ore bodies.