首页 | 官方网站   微博 | 高级检索  
     


The effect of SiO2 on electrical properties of low‐temperature‐sintered ZnO–Bi2O3–TiO2–Co2O3–MnO2‐based ceramics
Authors:Hairui Bai  Minghui Zhang  Zhijun Xu  Ruiqing Chu  Jigong Hao  Huaiyong Li  Yunyun Gong  Guorong Li
Affiliation:1. College of Materials Science and Engineering, Liaocheng University, Liaocheng, China;2. The State Key Lab of High Performance Ceramics and Superfinemicrostructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, China
Abstract:ZnO–Bi2O3–TiO2–Co2O3–MnO2‐based (ZBTCM) varistors were fabricated via the conventional solid‐state method, and the effect of SiO2 content on the phase transformation, microstructure, and electrical properties of the ZBTCM had been investigated. Results showed that this varistor can be sintered at a low temperature of 880°C with a high sintering density above 0.95 of the ZnO theoretical density. In these components, SiO2 acts as a controller in ZnO grain growth, decreasing the grain size of ZnO from 3.67 to 1.92 μm, which in turn results in an increase in breakdown voltage E1mA from 358.11 to 1080 V/mm. On the other hand, SiO2 has a significant influence on the defect structure and component distribution at grain‐boundary regions. When SiO2 content increases from 0 to 4 wt%, the value of the interface state density (Ns) increases sharply. At the same time, the electrical properties are improved gradually, and reach an optimized value with the nonlinear coefficient (α) up to 54.18, the barrier height (?b) up to 2.90 eV, and the leakage current (IL) down to 0.193 μA/cm2.
Keywords:bismuth oxide  low temperature  silicon  varistors  zinc oxide
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号