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Experimentally studied were the partial load characteristics of a gas-engine-driven heat pump unit and mainly ana—
lyzed was the law governing the influence of the end water flow rate and rotating speed on the heat production per—
formance of the unit. It has been found that the load of the condenser total waste heat performance coefficient and
primary energy source utilization rate will all increase with an increase of the end water flow rate. When the end wa—
ter flow rate increases from 1.8 m’/h to 3.6 m’/h the performance coefficient and primary energy source utiliza—
tion rate will increase by 11.6% and 19.5% respectively. The load of the condenser and the total waste heat will
increase with an increase of the rotating speed of the engine and the performance coefficient and the primary energy
source utilization rate however will decrease by 40% and 9.8% respectively when the rotating speed of the en—
gine increases from 1300 r/min to 2000 r/min. The gas-engine-driven heat pump unit boasts good partial load char—
acteristics at various end water flow rates and rotating speeds of the gas-engine. Key words: gas-engine-driven heat

pump heat production operating condition variable end water flow rate variable speed partial load

= Study of the Boundary Layer on a Plate Aerodynami—
cally Excited and Controlled by Using Nanosecond Pulse Plasma YUE Taipeng LI Ying-hong SUN
Dong CUI Wei( Engineering College Air Force Engineering University Xian China Post Code: 710038) //Jour-
nal of Engineering for Thermal Energy & Power. — 2011 26(5). -528 ~532

To study the working mechanism of the boundary layer on a plate aerodynamically excited and controlled by using
nanosecond pulse plasma and the law governing its change under different parameters the speed of air flow aerody—
namically excited and controlled by using the nanosecond pulse plasma was measured by utilizing a self-developed
velocity measurement system. The measurement results show that under different combined excitation modes the
aerodynamic excitation effectiveness by using the plasma is varied and that produced by using the medium barrier
discharge is regarded as the best. That achieved by using the nanosecond plasma to excite and induce the air to ac—
celerate will be enhanced with an increase of the excitation voltage. lts effectiveness played on a low speed air flow
is better than that on a high speed air flow. The jet flow direction aerodynamically excited and induced by using the
nanosecond pulse plasma forms a certain angle with the wall surface. Along the downstream direction the air flow
acceleration effectiveness aerodynamically excited and induced by using the plasma is weakened obviously. Key
words: aerodynamic excitation by using plasma boundary layer induction excitation combination medium barri-

er discharge

= Optimization of the Maximum Power Output of an External
Combustion Engine Under the Law of Radiation-based Heat Conduction MA Kang CHEN Lin-gen
SUN Feng-ui ( Postgraduate School Naval Engineering University Wuhan China Post Code: 430033) // Jour-
nal of Engineering for Thermal Energy & Power. -2011 26(5). -533 ~537

With a piston-type external combustion engine serving as an object of study optimized was an external combustion



