首页 | 官方网站   微博 | 高级检索  
     

不同类型桩基支撑的整体桥力学性能
引用本文:罗小烨,陈宝春,黄福云,郭维强,单玉麟,庄一舟.不同类型桩基支撑的整体桥力学性能[J].建筑科学与工程学报,2020,0(5):151-160.
作者姓名:罗小烨  陈宝春  黄福云  郭维强  单玉麟  庄一舟
作者单位:1. 福州大学 土木工程学院,福建 福州 350116; 2. 浙江工业大学 土木工程学院,浙江 杭州 310014
摘    要:以福建永春县上坂大桥作为工程背景建立了全桥有限元模型,通过实桥静载、动载试验对模型进行验证,并在整体式桥台下分别设置了矩形桩、圆形桩、预应力高强混凝土(PHC)管桩、钢管桩、H型钢桩、工型超高性能混凝土(UHPC)桩和工型UHPC-矩形变截面桩,研究了整体桥采用不同类型桩基时对其整体力学性能的影响。结果表明:有限元模型的计算基频较实测值减小了5.5%,第1阶模态均为横向侧飘,主梁在汽车偏载和中载作用下出现的竖向挠度与实测挠度较吻合,验证了有限元模型的合理性; 随着整体温度的升高,不同类型桩基支撑的整体桥主梁和桩基最大正、负弯矩和剪力随之增大,主梁竖向挠度随之减小,梁端水平位移也呈现明显的增长趋势,但在相同温度荷载作用下,整体式桥台下设置不同类型桩基对梁端水平位移的影响很小; 桩身显著变形区主要出现在0~6.4D(D为桩径)埋深处,在更大埋深处基本可忽略,表现出了柔性桩的变形性能; 随着变截面桩的上部UHPC桩段抗弯刚度的增大,主梁最大正、负弯矩与桩身最大弯矩均显著增大,桩顶水平变形显著减小; 随着上部UHPC桩段长度的增加,主梁最大正、负弯矩与桩身最大弯矩先呈现明显的增长趋势,而后趋于稳定,桩顶水平变形则先呈现明显减小趋势,随后趋于稳定; 上部UHPC桩段长度一般取为桩基总长的36%,对整体桥主梁和桩基的受力较好,为UHPC桩段的经济长度; 温差小于15 ℃时,整体桥采用不同类型桩基时对主梁和桩基的受力影响不大; 随着温差继续增大,整体桥采用H型钢桩、工型UHPC桩或工型UHPC-矩形变截面桩时主梁和桩基的受力性能更好。

关 键 词:整体桥  桩基  力学性能  动载试验  参数分析

Mechanical Property of Integral Bridge Supported by Different Types of Pile Foundations
LUO Xiao-ye,CHEN Bao-chun,HUANG Fu-yun,GUO Wei-qiang,SHAN Yu-lin,ZHUANG Yi-zhou.Mechanical Property of Integral Bridge Supported by Different Types of Pile Foundations[J].Journal of Architecture and Civil Engineering,2020,0(5):151-160.
Authors:LUO Xiao-ye  CHEN Bao-chun  HUANG Fu-yun  GUO Wei-qiang  SHAN Yu-lin  ZHUANG Yi-zhou
Affiliation:1. College of Civil Engineering, Fuzhou University, Fuzhou 350116, Fujian, China; 2. College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
Abstract:Yongchun Shangban bridge in Fujian province was selected as the engineering background and its finite element model was established. The calculation model was validated by static and dynamic load tests on practical bridge, and then different types of pile foundations such as rectangle pile, circular pile, pre-stressed high-strength concrete(PHC)pipe pile, steel pipe pile, H-shaped steel pile, I-shaped ultra-high performance concrete(UHPC)pile and I-shaped UHPC-rectangular variable section pile were designed to support the integral abutment in the model, aiming to study the impact of different types of pile foundations on the overall mechanical properties of integral bridge. The results show that the calculated fundamental frequency of the finite element model is 5.5% lower than the measured value, and the first vibrating model is lateral drift. The vertical deflection of the main beam under the action of vehicle eccentric load and medium load is consistent with the measured deflection, which verifies the rationality of the finite element model. With the increase of the overall temperature, the maximum positive and negative bending moments and shear forces of the main beam and pile foundation of the integral bridge supported by different types of pile foundation increase, the vertical deflection of the main beam decreases, and the horizontal displacement of the beam end also shows an obvious growth trend. Under the same temperature load, different types of pile foundation under the integral abutment have little effect on the horizontal displacement of the beam end. The significant deformation area of pile body mainly occurs in 0-6.4D(D is pile diameter)buried depth, which can be ignored in larger buried depth, showing the deformation performance of flexible pile. With the increase of the bending rigidity of the upper UHPC section of the variable section pile, the maximum positive and negative bending moments of the main beam and the maximum bending moments of the pile shaft increase significantly, and the horizontal deformation of the pile top decreases significantly. With the increase of the length of the upper UHPC pile section, the maximum positive and negative bending moment of the main beam and the maximum bending moment of the pile body first show an obvious growth trend, and then basically tend to be stable, and the horizontal deformation of pile top first decreases and then tends to be stable. The length of the upper UHPC pile section is generally taken as 36% of the total length of the pile foundation, which is better for the overall bridge girder and pile foundation, and is the economic length of the UHPC pile section. When the temperature difference is less than 15 ℃, the influence of different types of pile foundation on the stress of main beam and pile foundation is not significant. As the temperature difference continues to increase, when H-shaped steel pile, I-shaped UHPC pile or I-shaped UHPC rectangular variable section pile is used for the whole bridge, the mechanical performance of the main beam and pile foundation is better.
Keywords:integral bridge  pile foundation  mechanical property  dynamic load test  parameter analysis
本文献已被 CNKI 等数据库收录!
点击此处可从《建筑科学与工程学报》浏览原始摘要信息
点击此处可从《建筑科学与工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号