荀敬川,刘吉诚,彭晶蓉,等.无背索斜拉桥主塔受力及抗震性能分析[J].地震工程学报,2019,41(5):1133-1140.doi:10.3969/j. issn.1000-0844.2019.05.1133

XUN Jingchuan,LIU Jicheng,PENG Jingrong, et al.Force Analysis and Seismic Performance of Main Tower in a Cable-Stayed Bridge Without Backstay[J].China Earthquake Engineering Journal, 2019, 41(5): 1133-1140.doi: 10.3969/j.issn.1000-0844. 2019.05.1133

无背索斜拉桥主塔受力及抗震性能分析

荀敬川^{1,2},刘吉诚¹,彭晶蓉³,李 源²

(1. 中建路桥集团有限公司,河北石家庄 050001; 2. 长安大学公路学院,陕西西安 710064;

3. 西安工业大学,陕西西安 710021)

摘要:为探讨主塔横梁对无背索斜拉桥结构的静动力特性影响,以某无背索斜拉桥为原型,采用三维静、动力有限元计算方法,分析了实心横梁、大空心横梁、小空心横梁与无横梁四种主塔横梁方案的静、动力结构特性。静力计算结果表明:在最不利荷载作用下,四种对比方案中,实心横梁的拉索应力接近安全系数临界值;横梁重量越大,主梁挠度及主塔顺桥向变形值越小,且未设置横梁的方案在长期荷载作用下产生主跨侧的收缩徐变变形值。动力计算结果表明:大空心横梁方案结构横桥向刚度最大塔底轴力最大、横桥向弯矩值最大;无横梁时横桥向剪力最大,且无横梁方案使得主塔刚度较小,阵型易出现主塔横向失稳。综合考虑结构静、动力特性与施工便利性和后期维护,建议该结构采用实心主塔横梁。

关键词:桥梁工程;无背索斜拉桥;静动力特性;主塔横梁;有限元分析 中图分类号:U442;U448.27 文献标志码:A 文章编号:1000-0844(2019)05-1133-08 DOI:10.3969/j.issn.1000-0844.2019.05.1133

Force Analysis and Seismic Performance of Main Tower in a Cable-Stayed Bridge Without Backstay

XUN Jingchuan^{1,2}, LIU Jicheng², PENG Jingrong³, LI Yuan²
(1.CSCEC Road and Bridge Group Co., Ltd, Shijiazhuang 050001, Hebei, China;
2.School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China;
3.Xian Technological University, Xi'an 710021, Shaanxi, China)

Abstract: To study the influence of the beam between pylons on the static and dynamic characteristics of cable-stayed bridges without backstays, taking a bridge without backstays as an example, four finite element models are set up to analyze the static and dynamic structural characteristics and seismic response of solid beams, big hollow beams, small hollow beams, and the structure without beams with the three-dimensional static and dynamic finite element method. The static calculation results show that in the four schemes, the cable tension of structure with solid beam under the most unfavorable load reaches the safety factor critical value. Moreover, the de-

E-mail: 76201366@qq.com.

收稿日期:2018-01-01

基金项目:中国博士后科学基金项目(2015M572511);中央高校基本科研业务费专项资金项目(310821161012)

第一作者简介:荀敬川(1979-),男,博士研究生,高级工程师,研究方向:主要从事大跨度桥梁结构分析方面的研究。

flection of the main beam and the longitudinal deformation of the main tower decrease as the weight of the pylon beam increases. The shrinkage creep deformation value of the pylon without beams under long-term load deviates from the main span. The dynamic calculation results show that for the second scheme, the axial force and transverse bending moment value of the tower bottom are the largest. The transverse shear force is the largest for the fourth scheme, and the stiffness of the structure without beams is small, which makes the pylon prone to transverse instability. Considering the static and dynamic analysis results, construction convenience, and the maintenance of structures, it is suggested that the solid beam tower be used in the structure. **Keywords**: bridge engineering; cable-stayed bridge without backstay; static and dynamic charac-

teristics; main tower beam; finite element analysis

0 引言

在斜拉桥的不断发展中,人们通过对有背索斜 拉桥的研究发现,完全可以将主塔的倾斜角度继续 增大,除去索塔背侧的拉索,最终形成一种较为独 特、新颖的结构形式——无背索斜拉桥^[1-3]。无论从 结构力学的基础上讲,还是从建筑美学来说,无背索 斜拉桥都具有其独特的吸引力^[4-5]。

近年来,对于国内第一座无背索斜拉桥长沙洪 山大桥[6-7]的研究,邵旭东等从理论计算,现场施工 建设及美观效果上综合考虑了此类桥型的合理布局 问题,其中包括主梁截面形式、施工过程中的桥面压 重、索力分配、拉索锚固方式、塔内设观光电梯等方 面的研究。杨婧等^[8]从斜塔无背索结构的静力平衡 理论入手,深入研究了塔重梁轻及塔轻梁重两种情 况下斜塔无背索结构的静力平衡特点,结合工程实 际分别从塔、索、梁三方面概括了斜塔无背索部分斜 拉桥的结构特征。何新成等[9-11]以不同的斜拉桥施 工监控为基础,比较分析了斜拉桥在施工过程中的 索力调整方法。游峰等[12-15]结合塔、梁、索等主要结 构的不同布置形式,从力学的角度对无背索斜拉桥 进行结构体系的分类并详细分析了不同结构体系的 力学行为特征,比较了不同设计参数对整个结构力 学性能的影响等。

本文则以国内外主跨最长的全混凝土无背索斜 拉桥为依托,以主塔横梁为主要研究内容,对比不同 方案下的结构静力和地震作用效应对结构的影响, 综合分析结构在各工况下的响应,对主塔横梁设置 给出合理建议。

1 工程概况

某桥采用(80+40=120) m 的无背索斜拉体 系,塔梁墩固结,桥宽 30.5 m。主梁横截面采用两 个分离的箱形截面,中间用横梁连接,主梁两端采用 支座支撑。本桥采用分离式桥塔,主塔倾角为59°, 两个桥塔主塔柱中心间28 m,桥面以上塔高约 66 m。斜拉索锚固点在梁上间距4 m,塔上间距 3.414~3.454 m,塔端作为固定端,仅在梁端张拉。 全桥桥型布置图如图1所示。

桥梁工程场地类别为Ⅱ类,地震基本烈度为Ⅲ 度,地震动峰值加速度为0.1g,特征周期为0.4 s,地 震分组为第二组。反应谱阻尼比取为3%;E1和E2 反应谱如图2~3所示。

主塔横桥向两侧塔顶采用3根钢筋混凝土横梁 相连,因本桥主塔倾角较大,桥面较宽,无论在施工 阶段抑或成桥运营阶段中遭到破坏,均可能导致大 的生命财产以及间接的经济损失。本文则主要对比 了四种不同的塔顶横梁方式,方案一:桥塔横梁采用 实心截面,截面宽1.7 m,高3m,对应横梁重132.6 kN/m;方案二:桥塔横梁采用大空心截面,外轮廓 宽2.5 m,高3.6 m,内空心截面宽1.5 m,高2.6 m, 对应横梁重132.6 kN/m;方案三:桥塔横梁采用小 空心截面,外轮廓宽1.7 m,高3m,内空心截面宽 0.7 m,高2m,对应横梁重96.2 kN/m;方案四:不 设置桥塔横梁;具体如图 4 所示。方案二的实心截 面面积与方案一相同,故重量也相同。通过分别计 算不同方案对结构的静、动力特性进行研究,选择最 优方案以确保该结构施工安全且具有合理的抗震 能力。

Fig.2 Horizontal response spectrum of E1

图 3 E2 水平向反应谱

2 模型建立与参数选取

采用桥梁通用软件 MIDAS Civil 进行静力和抗 震需求分析;采用 UcFyber 计算横截面的抗弯能 力。根据该桥结构特点,下部结构、主梁、主塔及横 梁均采用梁单元,斜拉索采用仅受拉桁架单元桥面 铺装等二期恒载转化为集中质量单元施加于主梁单 元上,分析时需考虑3个方向的质量。

对于群桩基础在地震反应中的有限元模拟,其核 心问题就是土一结构体系的相互作用。本文采用基 于文克尔地基梁模型的简化模型方法,桩基础刚度采 用 M 法计算,只考虑水平两个方向的土弹簧;等代土 弹簧刚度计算方法参考文献[16]中的空间杆系模型。 本文四种方案的全桥空间有限元模型如图 5 所示。

图5 全桥计算模型示意图

Fig.5 Schematic diagram of the calculation model of full bridge

3 横梁对结构的静力影响分析

3.1 斜拉索受力分析

该桥拉索采用空间双索面扇形布置,全桥共26

根拉索,采用高强平行钢丝,抗拉标准强度为1670 MPa。在主梁满堂支架施工完成后,施工桥塔下部 无索区,主塔有索区段与斜拉索张拉交替施工,除最 短索外,其他节段均在施工对应主塔后张拉两根斜 拉索,且左右主塔相同节段同时进行。待有索区施 工完毕,施工主塔上部无索区并完成主塔横梁施工。

四种施工方案对应最不利荷载组合作用下的索 力值如图6所示。

在荷载组合作用下,横梁配重越大,长索索力值 越大;而四种方案对短索索力值的影响很小,可忽略 不计。其中,方案一中拉索单元最大应力值分别为 666 MPa,拉索安全系数为1 670/666=2.51;方案 二中为 663 MPa, 拉索安全系数为 1 670/663 = 2.52;方案三中为 649 MPa,拉索安全系数为 1 670/ 649=2.57;方案四中为 608 MPa,拉索安全系数为 1 670/608 = 2.75。根据《公路斜拉桥实施细则》 (JTG/T D65-01-2007)要求,拉索应力安全系数均 >2.5。以上四种方案中,实心横梁的自重增大了索 力;方案一、二索力基本一致,且已接近安全系数规 定值;方案三、四中索力均有一定的安全储备。

3.2 主梁变形及应力分析

依据空间有限元结构模型对四种方案承载能力 极限状态内力组合荷载工况下主梁的位移和应力进 行计算和分析,在最不利荷载组合作用下,四种方案 主梁均全截面受压,目满足《公路钢筋混凝土及预应 力混凝土桥涵设计规范》(JTG D62-2004)中规定 C50 混凝土抗压强度设计值不超过 22.4 MPa,抗拉 强度设计值不超过 1.83 MPa 的要求。

四种方案结构主梁发生最大位移的位置均在主 跨距离塔梁固结位置 0.56 L 处,即斜拉索 C8 与主 梁锚固点附近。主梁挠度如图 7 所示,所对应最大 值如表2所列,根据《公路斜拉桥实施细则》(JTG/ T D65-01-2007)均小于主跨 L/500=16 cm,四种方 案满足规范要求。

Fig.7 Girder deformation for four schemes

四种方案对应主梁最大挠度值

Table 1 Maximum deflection value of the main girder

for four schemes	
主塔横梁方案	最大下挠值/cm
方案一:实心横梁	-4.95
方案二:大空心横梁	-4.95
方案三:小空心横梁	-5.36
方案四:无横梁	-6.46

由计算结果可知,主塔横梁的配重影响主梁挠 度值,随着横梁重量减轻,主梁挠度增大。方案一、 二横梁重量相同,挠度值相同;方案三横梁配重相对 于方案一减小 27.45%, 挠度增大 8.28%; 方案四中 无横梁,挠度增大30.51%。

3.3 主塔应力及变形分析

主塔上端三根横梁在施工阶段由低而高依次施 工,施工完成时刻,方案一中主塔根部边跨侧为压应 力-2.60 MPa,主塔 C1 索锚固处(最高处横梁)边 跨侧为压应力-2.05 MPa;方案二中横梁自重与方 案一相同,主塔应力亦与方案一相同:方案三中主塔 根部边跨侧压应力为-1.50 MPa,主塔 C1 索锚固 处边跨侧为拉应力 0.86 MPa;方案四中无横梁,主 塔根部边跨侧出现 1.70 MPa 拉应力,计算应力如 图 8 所示。方案四中混凝土应力已接近规范中 C50 抗拉强度设计值 1.83 MPa。

在恒载及活载组合作用下主塔发生变形,主塔塔 顶在最不利组合状态下位移如图9所示。从图9可 以看出,主塔在最不利荷载组合工况下塔顶横桥向及

Fig.9 Main tower deformation for four schemes

竖向变形均较小,主要发生顺桥向变形。采用方案 一实心横梁时,塔顶顺桥向最大变形为23.58 mm, 仅为塔高的 0.36‰,采用方案二大空心横梁时,最大 变形值与方案一相同;采用方案三设置小空心横梁 时,最大变形值为 32.78 mm,较方案一增大了 39.03%,方案四最大变形值为 32.78 mm,较方案一 增大了 67.31%。

对于全混凝土的无背索斜拉桥,主塔主梁更关 注在长期荷载作用下由于材料收缩徐变而产生的变 形值。计算可知,不同方案在十年的时间内,主塔由 于收缩徐变而产生的变形如表 2 所列。主塔向边跨 侧变形时方向为正。

值

Table 2 Deformation at the top of main tower for

four schemes	
主塔横梁方案	塔顶变形值/cm
方案一:实心横梁	2.14
方案二:大空心横梁	2.14
方案三:小空心横梁	1.13
方案四:无横梁	-1.54

由表2可知,主塔上部有横梁压重时,结构发生 的收缩徐变变形为主跨侧方向,变形不会引起主跨 侧斜拉索的松弛;且压重越大,变形值越大。方案四 因无横梁,主塔朝主跨侧发生位移。

4 不同形式横梁对动力特性影响

4.1 自振特性分析

结构的自振特性直接反映了结构的刚度指标, 因此对三种主塔方案在成桥状态下的自振特性进行 计算分析,是进一步分析结构地震激励响应的基础。 本文基于子空间迭代法计算桥梁的动力特性,表3 给出主要振型。可以看出,四种主塔方案的动力特 性具有以下特点:

	表 3	四种方案前五阶自振频率及振型
Table 3	The first five na	tural frequencies and vibration modes for four schem

振型	方案	一:实心横梁	方案二:大空心横梁		方案三:小空心横梁		方案四:无横梁	
阶数	频率/Hz	振型特性	频率/Hz	振型特性	频率/Hz	振型特性	频率/Hz	振型特性
1	0.541 4	桥塔横桥向振动	0.601 5	桥塔横桥向振动	0.551 4	桥塔横桥向振动	0.363 6	桥塔横桥向振动
2	0.798 4	桥塔纵桥向振动	0.798 5	桥塔纵桥向振动	0.824 3	桥塔纵桥向振动	0.364 4	桥塔横桥向反对称振动
3	1.177 3	桥塔纵桥向振动	1.264 1	桥塔纵桥向振动	1.206 6	桥塔纵桥向振动	0.904 7	主梁竖向振动
4	1.343 6	主梁竖向振动	1.343 6	主梁竖向振动	1.348 4	主梁竖向振动	1.012 6	桥塔纵桥向反对称振动
5	2.714 8	桥塔横桥向振动	3.200 6	桥塔横桥向振动	2.686 3	桥塔横桥向振动	1.368 1	主梁竖向振动

(1)四种方案横向振型均先于纵向振型出现,且 前三种方案,出现的前五阶振型相同。

(2)方案二的横梁较方案一增加了横桥向刚度, 故一阶和五阶频率方案二明显大于方案一,纵桥向 和竖向频率相差不大。 (3)方案四一阶阵型与方案一~方案三相同,为 桥塔横桥向振动;但二阶阵型为桥塔横桥向反对称 振动,频率为 0.364 4 Hz,这是因为方案四中主塔刚 度较小的缘故。

参考《公路桥梁抗震设计细则》第 6.2.5 条,地

震分析工况中分别输入 E1、E2 反应谱,沿大桥纵向 中心线输入顺桥向水平地震动,与之垂直方向输入 横向地震动。具体工况如表 4 所列。

本桥采用反应谱分析方法进行地震反应分析, 取前 300 阶振型以保证振型参与质量达到 90%以 上,振型组合方法采用 CQC。振型阻尼比取为 3%。 分别计算四种桥塔横梁设置方案,得到支座处的内 力及墩、塔及桩的内力。

表 4 地震作用下的工况

Table 4 Conditions under earthquake action

工况	地震动	方向	组合
工况 1	E1 反应谱	顺桥向	恒载+E1反应谱顺桥向
工况 2	E1 反应谱	横桥向	恒载+E1反应谱横桥向
工况 3	E2 反应谱	顺桥向	恒载+E2反应谱顺桥向
工况 4	E2 反应谱	横桥向	恒载+E2反应谱横桥向

4.2 支座的地震响应分析

模型中,主跨边支座对应1#墩,边跨边支座对 应3#墩。通过计算,根据主墩竖向承载力及《公路 桥梁球型支座规格系列》(JT/T 854 2013)选定1# 墩球型支座型号为GQZ12500DX,竖向承载力×0.3 得到支座剪切能力3750 kN;3#墩球型支座型号 为GQZ9000DX,竖向承载力×0.3 得到支座剪切能 力2700 kN。

表 5 E1 地震支座横桥向剪力(单位:kN)

Table 5 Transverse shear force of supports under E1

	earthquake (Unit:kN)							
支座	方案一	方案二	方案三	方案四	剪切能力			
1#墩	3 339	3 243	3 329	3 351	3 750			
3井墩	802	795	797	782	2 700			

表 6 E2 地震支座横桥向剪力(单位:kN)

Table 6 Transverse shear force of supports under E2

earthquake	(Unit: kN)
------------	------------

支座	方案一	方案二	方案三	方案四	剪切能力
1#墩	11 351	11 027	11 319	11 392	3 750
3#墩	2 729	2 704	2 711	2 659	2 700

通过支座横桥向剪力验算,得到在 E1 地震作 用下四种方案的 1 # 墩、3 # 墩的支座不会被剪坏。 E2 地震作用下方案一~方案三的 1 # 墩、3 # 墩的 支座被剪坏,所以计算中选择支座横向自由;方案四 3 # 墩支座反应小于剪切能力,所以 3 # 墩支座选择 横向约束,在选定支座类型后,分别计算结构构件地 震响应。

4.3 墩、塔及桩的地震响应分析

限于篇幅, 仅对1 # ~3 # 墩底截面 E2 地震作 用下的结果进行分析。其中, 截面信息分别如图 10 所示:根据实配钢筋按约束混凝土、非约束混凝土及 主筋建立墩柱控制截面,抗弯能力计算采用 UcFyber 软件,计算 E1、E2 地震作用下墩柱截面的抗弯 能力(首屈弯矩或等效弯矩)。

墩底关键截面内力峰值见表 7~9 所列。

由表 7 可知,在 E2 地震响应下,1 # 墩底不同 方案轴力值相差不大;2 # 塔墩底采用方案二时最大 轴力最大,且四种方案的最大值与最小值差值分别 为52.45%、56.16%、51.70%和 40.68%;3 # 墩底的

(a) 1#墩底截面

(b) 2#塔墩底截面

图 10 截面及钢筋构造图

Fig.10 Section and reinforcement

表 7 E2 地震作用下结构轴力值(单位:kN)

 Table 7
 Axial force of structures under E2

 earthquake (Unit:kN)

		1		,	
结构(立置	方案一	方案二	方案三	方案四
1#墩底	MAX	1,557	1,558	1,555	1,552
	MIN	235	227	227	226
2#墩底	MAX	15,847	17,186	15,440	12,246
	MIN	7,535	7,535	7,458	7,264
3#墩底	MAX	763	922	920	1,454
	MIN	198	216	218	323

表 8 E2 地震作用下结构抗弯验算(単位:kN・m) Table 8 Flexural resistance of structures under

E2 earthquake (Unit:kN • m)

结构位置		顺相	顺桥向		横桥向	
		抗弯能力	地震反应	抗弯能力	地震反应	
	方案一		3 764		3 839	
日本	方案二	16 025	3 765	10 700	3 840	
収底	方案三	10 955	3 763	16 790	3 841	
110	方案四		3 765		3 842	
2 # 方 墩 方	方案一		245 417		37 414	
	方案二	506 300	245 718	651 900	39 036	
	方案三		242 567		37 338	
110	方案四		232 251		37 474	
	方案一	16.000	4 010	18 173	3 695	
3 井	方案二		4 010		3 660	
敬庭	方案三	10 209	4 004		3 678	
764	方案四		3 976		4 834	
0 lb	方案一		144 963		81 901	
2 拝	方案二	287 500	144 963	627 100	83 611	
喧底	方案三	207 300	$141 \ 478$	627 100	80 121	
成	方案四		$150 \ 642$		79 730	

Table 9 Shear capacity of structures under E2 earthquake (Unit: kN • m)

		•	•			
4 抽 伫 墨		顺相	顺桥向		横桥向	
拍	附且	抗弯能力	地震反应	抗弯能力	地震反应	
5	方案一		704		1 520	
日井	方案二	10.071	704	0.779	1 520	
 取 底	方案三	10 871	703	9778	1 520	
	方案四		704		1 520	
	方案一	64 396	21 849	63 349	34 170	
2 井	方案二		21 849		34 188	
収底	方案三		21 841		34 040	
755	方案四		21 729		27 863	
o lh	方案一		780	9 778	1 467	
3#	方案二	10 971	780		$1 \ 453$	
収底	方案三	10 871	779		1 460	
冺	方案四		772		1 901	

最大轴力值采用方案一时最小,采用方案四时最大, 四种方案的最大值与最小值差值分别为 74.05%、 76.57%、76.30%和 77.79。

经计算,采用不同的主塔横梁方案,对1 # 墩~ 3 # 墩的顺桥向弯矩值影响均较小,数值相差均在 5%以内。横桥向地震响应中,采用方案二时2 # 墩 底的弯矩值最大,约为其他方案的1.3 倍;2 # 塔底 的弯矩值亦最大,约为其他方案的1.04 倍。四种不 同的主塔横梁方案,结构构件抗弯能力均满足要求 且有一定的安全储备。

根据实配钢筋,进行抗剪验算,由计算结果可 知,采用不同的主塔横梁方案,对1 # 墩~3 # 墩的 顺桥向剪力值影响均较小。采用方案四时,2 # 塔墩 底的横桥向剪力最小,约为其他方案 0.8 倍,但 3 # 墩底的剪力值最大,为其他方案的 1.3 倍。四种方 案中,结构构件抗剪能力均满足要求且有足够的安 全储备。

5 结论

(1)静力计算中,主塔横梁为实心和同重量的 大空心截面时,在最不利荷载作用下,斜拉索应力接 近安全系数临界值2.5,小空心横梁与无横梁方案均 有一定的安全储备,安全系数分别为2.54和2.75。

(2)四种方案下主梁变形值与应力值均满足规范要求。主塔横梁配重越大,相同荷载作用下主梁挠度值越小,方案四未设置横梁时挠度最大。

(3)四种方案下主塔变形值与应力值均满足规范要求。主塔横梁配重越大,相同荷载作用下主塔顺桥向变形值越小;方案四未设置横梁时,主塔变形

值最大且在长期荷载作用下产生主跨侧的收缩徐变 变形。

(4)设置横梁的三种方案振型基本相同,且方案二横桥向刚度最大;不设置横梁的方案四,主塔整体刚度较小,易出现横桥向振动。

(5) 在 E1、E2 地震作用下,对结构下部构件进 行抗弯、抗剪验算,四种方案均满足抗震性能要求。 但方案二塔底轴力最大、横桥向弯矩值最大;方案四 横桥向剪力最大。

(6)综合考虑结构四种不同横梁方案下的静、 动力结构响应,并结合施工便利性、长期使用,建议 采用实心截面横梁。

参考文献(References)

- GIMSING N J, GEORGAKIS C T. Cable Supported Bridges
 [M].Chichester, UK: John Wiley & Sons, Ltd, 2011.
- [2] SUN B, CHENG J, XIAO R C. PreliminaryDesign and Parametric Study of 1400 m Partially Earth-anchored Cable-stayed Bridge[J].Science China Technological Sciences, 2010, 53(2): 502-511.
- [3] 易云焜.曲线形独塔无背索斜拉桥的构思与设计[J].公路交通 技术,2017,33(4):98-101.
 YI Yunkun.Conception and Design of Curved Single Tower Ca-

ble-Stayed Bridge[J]. Technology of Highway and Transport, 2017, 33(4):98-101.

- [4] 王勤康.无背索双斜塔斜拉桥静力和整体稳定性分析[D].合肥:合肥工业大学,2017.
 WANG Qinkang. Static and Integral Stability Analysis of Double Towers Cable-stayed Bridge without Backstays[D]. Hefei:Hefei University of Technology,2017.
- [5] 章博.1~32 m 独塔无背索实训斜拉桥设计研究[D].石家庄: 石家庄铁道大学,2017.

ZHANG Bo. Study on the Design of $1 \sim 32$ m Single Pylon Practical Training Cable-stayed Bridge without Backstays[D]. Shijiazhuang : Shijiazhuang Tiedao University, 2017.

[6] 陈爱军.大跨无背索竖琴式斜拉桥合理结构型式研究[D].长 沙:湖南大学,2005.

CHEN Aijun. The Research on the Reasonable Structure of Long-span Harp-shaped Cable-stayed Bridge with no Backstays [D].Changsha:Hunan University,2005.

- [7] 陈爱军,邵旭东.无背索竖琴式斜拉桥合理结构体系分析[J].
 中外公路,2009,29(4):89-95.
 CHEN A J,SHAO X D.Analysis of Reasonable Structural System for Cable Stayed Bridge without Back Stays[J].Journal of China and Foreign Highway,2009,29(4):89-95.
- [8] 杨婧.斜塔无背索部分斜拉桥静力性能与动力性能分析[D].西 安:长安大学,2008.

YANG Jing.Static Characteristics and Dynamic Characteristics Analysis of Inclined Pylon Partial Cable-stayed Bridge without Back-stays[D].Xian:Changan University,2008.

[9] 李成奎.地锚式预应力混凝土独斜塔斜拉桥安全性能研究[D]. 西安:长安大学,2017.

LI Chengkui. Study on the Safety Performance of Earth-anchored Prestressed Concrete Single Slanted Pylon Cable-stayed Bridge[D].Xi'an:Changan University,2017.

[10] 黄月超.无背索斜拉桥施工控制关键技术[D].西安:长安大 学,2014.

> HUANG Yuechao. The Key Technology of Construction Control of Cable-stayed Bridge without Backstays [D]. Xi´an: Changan University, 2014.

[11] 何新成.独塔无背索混凝土斜拉桥施工控制分析[D].西安:西 安建筑科技大学,2012.

> HE Xincheng.Construction Control Andanalysis of Single Pylon Concrete Cable-stayed Bridge without Backstage[D].Xi' an:Xi'an University of Architecture and Technology.2012.

- [12] 游峰.独塔无背索弯坡斜拉桥受力分析与施工控制研究[D]. 武汉:武汉理工大学,2007.
 YOU Feng. The Analysis and Construction Control of Single-Tower without Dorsal Cable over Bending Slope[D]. Wuhan: Wuhan University of Technology,2007.
- [13] 赵晓晋,王凌波,沈传东,等.某独斜塔地锚式预应力混凝土 (PC)斜拉桥塔柱倾角优化分析[J].北京工业大学学报,2017,

43(2):261-268.

ZHAO Xiaojin, WANG Lingbo, SHEN Chuandong, et al. Pylon Inclination Optimized Analysis of one Single Inclined Pylon Earth-anchored Prestressed Concrete (PC) Cable-stayed Bridge[J].Journal of Beijing University of Technology, 2017, 43(2):261-268.

- [14] 琚明杰,刘世明,刘永健.索力随机误差对组合梁无背索斜拉桥受力影响[J].公路交通科技,2016,33(10):60-66.
 JU Mingjie,LIU Shiming,LIU Yongjian.Influence of Random Deviation of Cable Tension Force on Stress State of Composite Girder Cable-stayed Bridge without Back-stay[J].Journal of Highway and Transportation Research and Development, 2016,33(10):60-66.
- [15] 肖汝诚,卫璞,孙斌.大跨度部分地锚斜拉桥力学分析与参数研究[J].东南大学学报(自然科学版),2013,43(5):1097-1103. XIAO Rucheng, WEI Pu, SUN Bin. Mechanical Analysis and Parametric Study of Long-span Partially Earth-anchored Cable-stayed Bridge[J].Journal of Southeast University (Natural Science Edition),2013,43(5):1097-1103.
- [16] 安军海,安林轩,李积栋,等.浅埋地下结构抗震设计的反应位 移法关键问题[J].北京工业大学学报,2016,42(6):926-932.
 AN Junhai, AN Linxuan, LI Jidong, et al. Response Displacement Method in Several Key Issues of Shallow Buried Underground Structure Seismic Design[J]. Journal of Beijing University of Technology, 2016,42(6):926-932.