首页 | 官方网站   微博 | 高级检索  
     


THE METHOD OF CONSTRUCTING IONOSPHERIC TEC BACKGROUND FIELD BASED ON SVR MODEL
Authors:SONG Dong-mei  XIANG Liang  SHAN Xin-jian  YIN Jing-yuan  WANG Bin  CUI Jian-yong
Affiliation:1.College of Ocean and Space Information, China University of Petroleum(East China), Qingdao 266580, China;2.The Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China;3.Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;4.State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China;5.Shanghai Earthquake Agency, Shanghai 200062, China
Abstract:There are many factors related to the variations of TEC, and the changes of TEC caused by earthquake only occupy a small portion. Therefore, it is vital how to exclude the ionospheric interference of non-seismic factors accurately in the process of seismic ionospheric anomaly extraction. This study constructed a TEC non-seismic dynamic background field considering the influence of solar and geomagnetic activities. Firstly, the TEC components of half-year cycle and annual cycle are extracted by wavelet decomposition. Then, it establishes a regression model between TEC in which periodic factors are removed and solar activity index, geomagnetic activity index with SVR method(support vector regression)in non-seismic period. Finally, based on the constructed model, the solar activity index and geomagnetic activity index is used to reconstruct aperiodic components of TEC in earthquake's period. From the reconstructed aperiodic components of TEC plus the half-year periodic components and annual periodic components of TEC in the same period, the non-seismic dynamic background field is obtained. Comparing the residuals relative to original TEC values in non-seismic dynamic background field and traditional sliding window background, there are apparent monthly periodic change and semi-annual periodic change in the residuals of sliding window background, which can have obvious impacts on the subsequent seismic ionospheric anomaly detection. In order to test the validity of seismic TEC anomaly detection based on the background field construction method, this paper investigated the long time series TEC anomalies near Wenchuan city(30°N, 100°E)from March 1 to September 26 in 2008. It is found that under the condition of non-seismic disturbance such as solar activity and geomagnetic activity, TEC abnormal disturbance is rarely detected by non-seismic dynamic background field method, when compared with the traditional sliding time-window method. And before the earthquake, more TEC anomalies were detected based on the proposed method, also, they were more intense than those extracted by sliding window method. Therefore, the TEC background field construction method based on SVR(support vector regression)has superiorities in both system errors elimination, which are caused by solar, geomagnetism, the non-seismic ionospheric disturbance events and periodic fluctuations of TEC, and in reducing the false alarm rate of seismic TEC anomaly. Moreover, it can also improve the seismic TEC anomaly detection ability. In addition, this paper analyzed the time-spatial distribution of TEC anomaly before three earthquakes on May 12, August 21 and August 30, 2008. They were mainly negative abnormal perturbations and often distributed on the equatorial side of epicenter.
Keywords:ionosphere  TEC(Total Electron Content)  SVR(Support Vector Regression)  wavelet analysis  Wenchuan earthquake  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号