首页 | 官方网站   微博 | 高级检索  
     


Identification of the human cytochromes P450 catalysing the rate-limiting pathways of gliclazide elimination
Authors:Elliot David J  Suharjono  Lewis Benjamin C  Gillam Elizabeth M J  Birkett Donald J  Gross Annette S  Miners John O
Affiliation:Department of Clinical Pharmacology, Flinders University and Flinders Medical Centre, Bedford Park, Adelaide, Australia.
Abstract:AIMS: To identify the human cytochrome P450 (CYP) enzymes responsible for the formation of the 6beta-hydroxy (6beta-OHGz), 7beta-hydroxy (7beta-OHGz) and hydroxymethyl (MeOH-Gz) metabolites of gliclizide (Gz). METHODS: 6beta-OHGz, 7beta-OHGz and MeOH-Gz formation by human liver microsomes and a panel of recombinant human P450s was measured using a high-performance liquid chromatography procedure, and the kinetics of metabolite formation was determined for each pathway. Effects of prototypic CYP enzyme selective inhibitors were characterized for each of the microsomal metabolic pathways. RESULTS: Microsomes from six human livers converted Gz to its 6beta-OHGz, 7beta-OHGz, and MeOH-Gz metabolites, with respective mean (+/- SD) K(m) values of 461 +/- 139, 404 +/- 143 and 334 +/- 75 microm and mean V(max) values of 130 +/- 55, 82 +/- 31 and 268 +/- 115 pmol min(-1) mg(-1), respectively. V(max)/K(m) ratios for the microsomal reactions parallelled relative metabolite formation in vivo. Sulfaphenazole inhibited microsomal 6beta-OHGz, 7beta-OHGz and MeOH-Gz formation by 87, 83 and 64%, respectively, whereas S-mephenytoin caused significant inhibition (48%) of only MeOH-Gz formation. Recombinant CYP2C9, CYP2C18 and CYP2C19 catalysed all hydroxylation pathways, whereas CYP2C8 formed only 6beta-OHGz and 7beta-OHGz. CONCLUSION: Taken together, the results indicate that CYP2C9 is the major contributor to Gz metabolic clearance, although CYP2C19 may also be involved in MeOH-Gz formation (the major metabolic pathway). Factors known to influence CYP2C9 activity will provide the main source of variability in Gz pharmacokinetics.
Keywords:CYP2C18  CYP2C19  CYP2C9  cytochrome P450  gliclazide  reaction phenotyping
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号