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= An Analysis of Flame Signals in a Boiler Furnace Based on a
Phase Space Reconstruction] , ]/MA Shao-hua, HUA Ying (College of Electrical Engineering under the Shenyang
Polytechnical University, Shenyang, China, Post Code: 110023), LI Xiao-bai (China National Fire-fighting Electronic
Product Quality Supewision and Inspection Center, Shenyang, China, Post Code: 110031) //Journal of Engineering for
Thermal Energy & Power. —2007, 22 (4). —440 ~442, 456

By employing chaotic and fractal theory, a qualitative analysis and quantitative calcualtion have been conducted of the
flame signals measured from a boiler furnace. Through a restmcturing of phase spaces, obtained were the time- sequence
phase-plane map and correlation dimensions of burning flames under both stable and unstable combustion corditions. The
analysis and calculation results indicate that under a stable combustion state, the two-dimensional phase-plane map of the
flame signals is elatively wide and their correlation dimensions range fiom 5. 5855 to 6. 8415.Under an unstable combus-
tion condition, the two-dimersional phase-plane map of the flane signals is relatively narrow and their correlation dimen-
sions range fom 5. 8843 to 6. 0907. Under both working conditions there exists a conspicuous difference between the
flame time- sequence phase-plane map and crrelation dimensions. However, the correlation dimensions during stable com-
bustion are alwvays considerably greater than those during unstable combustion. Hence the crrelation dimensions can be
used as a characteristic parameter to identify the state of flame combustion. The combustion diagnosis method poposed by
the authors can provide an effective approach for developing innovative optical-type flame detectors. Key words: furnace
flame, combustion diagnosis, status discrimination, restructuring of phase spaces, number of correlation dimensions, chaos,

fractal science

CO =Technical Madification of a CO Heat Recovery Boiler with the
Addition of a Bypass Flue Duct and an Economizer] , ]/YAN bin (China Petroleum Corporation Harbin Petro-
chemical Subcompany, Harbin, China, Post Code: 150056)//Journal of Engineering for Thermal Energy & Power. —
2007, 22(4). —443 ~445, 449

Enumerated were the problems existing in a 1.2 Mt/ a RFCCU incineration-type CO heat recovery boiler of Haibin Petro-
chemical Sub-company affiliated to China Petroleum Corporation. Following a themal and flue duct resistance calculation,
a variety of improvement measures, such as additional provision of a bypass flue duct and an economizer as well as the use
of a XD-2000 type gas impulse soot blower, were implemented . They have enhanced the steam output, flue-gas enewgy re-
covery capacity and themal efficiency of the CO heat recovery hoiler; thus meeting the demand of a plant exhausting at
high loads all the flue gas into the heat recovery boiler. If the current 15%; of regenerative flue gas is exhausted through a
bypasss i.e. the flue gas discharge quantity being assessed at 20 000 m*/h @20 Cand CO content 6% ), the thermal en-
emy recovered shall be 21.06X 10° kJ/h. The energy consumption of a cracking plant can be decreased by 29.3 10"
kJ/t, equivalent to newly accrued economic benefits of about RMB 8 million yuan per year. This represents a significant
energy-saving effectiveness. Key words: catalytic cracking plant, CO heat recovery boiler, bypass flue duct, bypass econo-

mizer

(DCFC) = An Experimental Study of Direct Carbon Fuel Cells (DCFC)[ . ]/
CHEN Hong-wei, WANG Jin-quan, GAO Jian-qiang, et al (College of Energy Source and Power Engineering under the
North China University of Electric Power, Baoding, China, Post Code: 071003)// Journal of Engineering for Thermal FEn-
egy &Power. —2007, 22(4). —446 ~449

Direct carbon fuel cells (DCFC) represent an effective and clean fuel-cell technology, which is based on the theory of pro-
ducing electric energy directly thiough an electiochemical reaction of carbon and oxygen with no need for gasification and
reforming. Its efficiency can be as high as 80% and fuel utilization rate can reach about 100%. A single-body cell of
DCFC was assembled with its working temperature ranging from 500 to 700 “C. The cell uses fusible hydroxide to serve as
an electrolyte with a certain amount of catalyst being added . Graphite is used to sewe as a positive pole and stainless steel
as a negative one with moistened oxygen being added to serve as an oxidation agent. An experimental study has been per-
formed of the output performance of DCFC by using different electrolytes and at different oxygen flow rates. The results of
the study show that KOH has a better conductivity than NaOH and the cell made fom KOH can operate more stably and
is more favorable for cell output. When the oxygen flow rate is 70 ml/min, the cell has an optimum output perfomance

with,its, maximal current and power, density being 105 mA/em’ and 0,041 W/ em” respectively. The open-circuit voltage



