首页 | 官方网站   微博 | 高级检索  
     

不同海况下近海超大型风力机动力学响应及结构损伤分析
引用本文:李志昊,岳敏楠,闫阳天,李春,杨阳,薛世成.不同海况下近海超大型风力机动力学响应及结构损伤分析[J].太阳能学报,2022,43(7):366-374.
作者姓名:李志昊  岳敏楠  闫阳天  李春  杨阳  薛世成
作者单位:1.上海理工大学能源与动力工程学院,上海 200093; 2.上海市动力工程多相流动与传热重点实验室,上海 200093; 3.利物浦约翰摩尔斯大学海事与机械工程系,利物浦 L3 3AF,英国
基金项目:国家自然科学基金(51976131;52006148);;上海市“科技创新行动计划”地方院校能力建设项目(19060502200);
摘    要:以超大型DTU 10 MW单桩式近海风力机为研究对象,通过p-y曲线和非线性弹簧建立桩-土耦合模型,选取Kaimal风谱模型建立湍流风场,基于P-M谱定义不同频率波浪分布,并利用辐射/绕射理论计算波浪载荷,采用有限元方法对不同海况下单桩式风力机进行动力学响应、疲劳及屈曲分析。结果表明:不同海况波浪载荷作用下塔顶位移响应及等效应力峰值远小于风及风浪联合作用,其中风浪联合作用下风力机塔顶位移响应及等效应力略小于风载荷;波浪载荷对风载荷引起的单桩式风力机动力学响应具有一定抑制作用,此外相较于波浪载荷,风载荷为控制载荷;风载荷与风浪联合作用下风力机等效应力峰值位于塔顶与机舱连接处,波浪载荷风力机等效应力峰值位于支撑结构与桩基连接处;仅以风载荷预估风力机塔架疲劳寿命将导致预估不足;随着波浪载荷的增大,风力机失稳风险加大,波浪载荷不可忽略;不同海况下,风浪联合作用局部屈曲区域位于塔架中下端,在风力机抗风浪设计时,应重点关注此处;变桨效应可大幅降低风力机动力学响应、疲劳损伤及发生屈曲的风险。

关 键 词:海上风力机  结构分析  瞬态动力学响应  疲劳分析  屈曲分析  
收稿时间:2020-10-21

ANALYSIS OF DYNAMIC RESPONSE AND STRUCTURAL DAMAGE OF OFFSHORE SUPER LARGE WIND TURBINE UNDER DIFFERENT SEA CONDITIONS
Li Zhihao,Yue Minnan,Yan Yangtian,Li Chun,Yang Yang,Xue Shicheng.ANALYSIS OF DYNAMIC RESPONSE AND STRUCTURAL DAMAGE OF OFFSHORE SUPER LARGE WIND TURBINE UNDER DIFFERENT SEA CONDITIONS[J].Acta Energiae Solaris Sinica,2022,43(7):366-374.
Authors:Li Zhihao  Yue Minnan  Yan Yangtian  Li Chun  Yang Yang  Xue Shicheng
Affiliation:1. University of Shanghai for Science and Technology, Shanghai 200093, China; 2. Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, China; 3. Department of Maritime and Mechanical Engineering, Liverpool John Moores University, Liverpool Byrom Street, L3 3AF, UK
Abstract:To very large DTU 10 MW monopile offshore wind turbine as the research object, by p-y curve and nonlinear spring pile and soil coupling model is set up, select Kaimal spectrum model wind turbulence wind field, and based on P- M wave spectrum defining different frequency distributions, and radiation/diffraction theory is used to calculate the wave load, using finite element method (FEM) of different sea condition order pile type wind turbine dynamic response, fatigue and buckling analysis. The results show that the displacement response and equivalent stress peak of the tower top under different sea conditions and under wave load are far less than that under combined wind and wind wave action, and the displacement response and equivalent stress of the tower top under combined wind and wind wave action are slightly less than that under wind load. The wave load has a certain inhibitory effect on the wind dynamic mechanical response. In addition, compared with the wave load, the wind load is the control load. Under the combined action of wind load and wind wave, the peak value of equivalent stress of wind turbine is located at the connection between tower top and engine room, while the peak value of equivalent stress of wave load wind turbine is located at the connection between support structure and pile foundation. Only using wind load to estimate the fatigue life of wind turbine tower will lead to underestimation. With the increase of wave load, the risk of wind turbine instability increases, and wave load cannot be ignored. Under different sea conditions, the local buckling region under combined wind and wave action is located at the middle and lower end of the tower, which should be paid more attention to when designing wind turbine against wind waves. The variable paddle effect greatly reduces the risk of wind mechanical response fatigue damage and buckling.
Keywords:offshore wind turbines  structural analysis  transient response  fatigue analysis  buckling analysis  
点击此处可从《太阳能学报》浏览原始摘要信息
点击此处可从《太阳能学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号