中国大陆科学钻探主孔0~2000米流体剖面及流体地球化学研究

罗立强 孙青 詹秀春. 中国大陆科学钻探主孔0~2000米流体剖面及流体地球化学研究[J]. 岩石学报, 2004, 20(1): 185-191.
引用本文: 罗立强 孙青 詹秀春. 中国大陆科学钻探主孔0~2000米流体剖面及流体地球化学研究[J]. 岩石学报, 2004, 20(1): 185-191.
LUO LiQiang,SUN Qing and ZHAN XiuChun National Research Center of Geoanalysis,Beijing 100037,China. 0 - 2000m fluid profiles and sources in Chinese Continental Scientific Drilling Project[J]. Acta Petrologica Sinica, 2004, 20(1): 185-191.
Citation: LUO LiQiang,SUN Qing and ZHAN XiuChun National Research Center of Geoanalysis,Beijing 100037,China. 0 - 2000m fluid profiles and sources in Chinese Continental Scientific Drilling Project[J]. Acta Petrologica Sinica, 2004, 20(1): 185-191.

中国大陆科学钻探主孔0~2000米流体剖面及流体地球化学研究

  • 基金项目:

    国家九五重大科学工程项目“中国大陆科学钻探工程”,国家自然科学基金重大项目(编号:40399144),国家重点基础研究发展规划项目(2003CB716508)资助

0 - 2000m fluid profiles and sources in Chinese Continental Scientific Drilling Project

  • 地下深部流体的来源与演化的研究已成为国际地球化学领域的探索前沿和研究热点之一,中国大陆科学钻探(CCSD)为开展深部流体地球化学研究提供了珍贵的样品,构建了探索地下流体的研究平台。中给出了中国大陆科学钻探(CCSD)主孔He、Ar、N2、O2、H2、CH4、CO2流体地球化学剖面。CCSD主孔CH4浓度的变化与H2浓度的升降没有显相关性;CO2浓度的变化与钻井条件下的氧含量无显相关性;CO2浓度与CH4浓度的关系有三种情况:CO2浓度与CH4浓度不相关、CO2浓度与CH4浓度负相关、或CO2浓度与CH4浓度正相关;氦浓度的增加与CO2和CH4浓度的上升呈现一定的正相关。大气中N2、O2、Ar浓度太高,掩盖了井中N2、O2、Ar气体组分浓度变化,通常情况下N2、O2、Ar浓度变化难以作为深源气体的判据。CCSD流体与KTB流体中氧.氮关系基本一致,氧、氮线性相关(r=0.97),表明这两种气体主要来源于大气。KTB中的CH4与乙烷、N2表现出非常强的线性关系,而在CCSD流体中CH4与乙烷、N2之间不存在线性相关性。两个地区间的流体成因、围岩相互作用机理等方面可能有所不同。在CCSD主孔中,目前已发现存在大量的CO2,及少量CO、CH4、C2H6、C3H8、C4H10和He、N2等气体。已确定300~2000米主孔出现多处来自于地下的气体异常,包括甲烷和C2~C4等烃类气体,一氧化碳与二氧化碳,稀有气体氦。根据流体各组分间相关性研究,可以判定异常中氧主要来源于大气,N2、Ar和CO2有一部分源于大气,一部分来源于地下。在流体显异常时,甲烷等烃类气体、氦、一氧化碳和绝大部分CO2来源于地下。出现显地下流体异常处,在岩石中存在裂隙、晶洞、破裂面、断层;它们作为流体迁移通道或存储空间,可能是流体存在的必要条件。某些CO2和He气异常与碳酸盐和铀矿石等围岩密切相关。
  • 加载中
  • [1]

    [1]Bell D R. 1992. Water in mantle minerals. Nature, 357: 646 -647

    [2]

    [2]Bell D R and Rossman G R. 1992. Water in earth\'s mantle: the role of nominally anhydrous minerals. Science, 255:1391 -1396

    [3]

    [3]Bergman S C. 1987. Lamproites and other potassium-rich igneous rocks a review of their occurrence, mineralogy and geochemistry. In:Alkaline igneous rocks, edited by Fitton J G and Upton B G J.London: Blackwell Scientific Publications, 103 -190

    [4]

    [4]Burnard P G, Stuart F M, Turner G. 1994. Air contamination of basaltic magmas: implications for high 3He/4He mantle Ar isotopic composition. J. Geophys. Res., 99(B9): 17709-17715

    [5]

    [5]Faber E. 1995. Origin of hydrocarbon gases in the pump-test of the KTB pilot well. Scientific Drilling, 5: 123 - 128

    [6]

    [6]Giggenbach W F, Sano Y and Wakita H. 1993. Isotopic composition of helium, and CO2 and CH4 contents in gases produced along the New Zealand part of a convergent plate boundary. Geochim. Cosmochim.Acta, 57:3427 - 3455

    [7]

    [7]Henry P, Lallemant S J and Pichon X L. 1989. Fluids venting along Japanese trenches: tectonic context and thermal modeling Tectonophysics, 160: 277 - 291

    [8]

    [8]Holloway J R. 1984. Graphite - CH4 - H2O - CO2 equilibria at lowgrade metamorphic conditions. Geology, 12:455 - 458

    [9]

    [9]He TX, Lu LZ, Li SX et al. 1980. Metamorphics. Beijing: Geological Publishing House, 227 ( in Chinese)

    [10]

    [10]Langseth M G and Moores J C. 1990. Fluids in accretionary prisms.EOS, 70:245-247

    [11]

    [11]Sherwood B L, Ballentine C J and O ′Onions R K. 1997. The fate of mantle-derived carbon in a continental sedimentary basin: integration of C/He relationships and stable isotope signatures. 61 ( 11 ). 2295- 2307

    [12]

    [12]Matveev S et al. 1997. Volatile in the Earth\'s mantle: I. Synthesis of CHO fluids at 1273 K and 2.4GPa. Geochim. Cosmochim. Acta,61(15): 3081 -3088

    [13]

    [13]Navon O, Hutcheon I D and Rossman G R. 1988. Mantle-derived fluid in diamonds micro-inclusions. Nature, 335:784 -789

    [14]

    [14]Ozima M, Zashu S, and Takigami Y. 1989. Origin of the anomalous 40Ar-39Ar age of Zaire cubic diamonds: excess 40Ar in pristine mantle fluids. Nature, 6204: 226 - 229

    [15]

    [15]Pasteris J D. 1987. Fluid inclusions in mantle xenoliths. In : Mantle Xenoliths, edited by Nixon P. H. New York: A Wiley Interscience Publication, 691 - 707

    [16]

    [16]Thompson A B. 1992. Water in the earth\'s upper mantle. Nature, 358:526 - 527

    [17]

    [17]Weise S M, Althaus E et al. 1997. Paleofluids and recent fluids in the upper continental crust: results from the German continental deep drilling program (KTB). J. Geophysical Research, 102: 18233-18254

    [18]

    [18]Whiticar M J. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol., 161:291-314.

    [19]

    [19]Xue LH. 1994. Structural water in the natural diamond. Chinese Science Bulletin. 18:1691 - 1692( in Chinese)

    [20]

    [20]Zhang HX, Xu ZF, Huang ZL, Liu CQ. 2000. The primary characters and origin of mantle fluids. Geology and Geochemistry, 28 ( 2 ): 1 -7 (in Chinese)

    [21]

    [21]贺同兴,卢良兆,李树勋,阑玉琦编.1980.变质岩岩石学.北京:地质出版社,227

    [22]

    [22]薛理辉.1994.天然金刚石的结构水.科学通报.(18):1691-1692

    [23]

    [23]张鸿翔,徐志方,黄智龙,刘丛强.2000.地幔流体基本特征及成因.地质地球化学,28(2):1-7

  • 加载中
计量
  • 文章访问数:  7696
  • PDF下载数:  8318
  • 施引文献:  0
出版历程
修回日期:  2003-11-30
刊出日期:  2004-01-31

目录