CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
DNGTz的非等温热分解动力学及热安全性
作者:
作者单位:

(1. 西北大学化工学院, 陕西 西安 710069; 2. 西安近代化学研究所燃烧与爆炸技术重点实验室, 陕西 西安 710065; 3. 故宫博物院文保科技部, 北京 100009)

作者简介:

胡拥鹏(1989-),男,硕士,主要从事含能材料合成研究。e-mail: 1065277835@qq.com 通信联系人: 马海霞(1974-),女,教授、博士生导师,主要从事应用化学研究。e-mail: mahx@nwu.edu.cn

通讯作者:

马海霞(1974-),女,教授、博士生导师,主要从事应用化学研究。e-mail: mahx@nwu.edu.cn

基金项目:

国家自然科学基金(21073141,21373161); 教育部新世纪优秀人才支持计划(12-1047)


Non-isothermal Thermal Decomposition Kinetics and Thermal Safety of DNGTz
Author:
Affiliation:

(1. School of Chemical Engineering, Northwest University, Xi′an 710069, China; 2. Science and Technology on Combustion and Explosion Laboratory, Xi′an Modern Chemistry Research Institute,Xi′an 710065, China; 3. Conservation Technology Department, the Palace Museum, Beijing 100009, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    合成了3,6-二硝基胍基-1,2,4,5-四嗪(DNGTz), 运用差示扫描量热法(DSC)和热重法(TG-DTG)研究其热行为。以DSC曲线数据为基础, 采用Kissinger法、Ozawa法和积分法研究了DNGTz的非等温热分解机理及动力学, 获得DNGTz的热分解表观活化能和指前因子分别为187.23 kJ·mol-1和1015.01 s-1, 其热分解机理为相边界反应, 热分解机理函数的微分形式为f(α)=1。为了对DNGTz进行热安全性研究, 估算得到DNGTz的密度(ρ=1.762 g·cm-3)和导热系数(λ= 0.1856 W·m-1·K-1), 同时应用Micro-DSC III微热量仪对DNGTz进行了比热容(cp)测定, 得到了DNGTz的比热容随温度变化的方程cp(J·g-1·K-1)=-2.8805+2.1283×10-2T-2.3132×10-5T2-1.1689×10-8T3 (287 K < T < 352 K)。运用热分解动力学参数、机理函数及DNGTz的比热容方程、ρλ, 计算得到DNGTz的绝热至爆时间(tTIad= 8.16 s)、自加速分解温度(TSADT=249.12 ℃)、热点火温度(Tbe =262.31 ℃)和热爆炸临界温度(Tbp=277.68 ℃), 进而计算获得半径为1 m的DNTGz几何体(无限圆柱、球或无限平板)在环境温度300 K时的热感度概率密度函数S(T)与温度(T)的关系曲线、峰值温度(TS(T)max)、热安全度(SD)、临界热爆炸环境温度(Tacr)和热爆炸概率(PTE), 结果表明球形样品的热安全性稍高于无限圆柱或平板状的样品。

    Abstract:

    The compound 3,6-bis-nitroguanyl-1,2,4,5-tetrazin (DNGTz) was synthesized and its thermal behavior was studied by differential scanning calorimetry (DSC) and thermogravity (TG-DTG). The data in DSC curve were used to analyze the thermal decomposition mechanism and kinetics using the methods of Kissinger, Ozawa and integral. Therefore, the thermal kinetic parameters of the activation energy and pre-exponential factor were obtained as 187.23kJ·mol-1 and 1015.01s-1, respectively. The thermal decomposition mechanism is phase boundary reaction and the differential function is f(α)=1. Then, the thermal safety of DNGTz, the density (ρ=1.762 g·cm-3) and thermal conductivity (λ= 0.1856 W·m-1·K-1) were estimated and the specific heat capacity (cp) was measured to obtain the equation of cp with T in a micro-calorimetry (Micro-DSCIII) which is cp(J·g-1·K-1)=-2.8805+2.1283×10-2T-2.3132×10-5T2-1.1689×10-8T3 (287K < T < 352K). Then, the thermal decomposition kinetic parameters, mechanism function and the equation of cp, ρ and λ were combined to evaluate the adiabatic-time-to-explosion (tTIad= 8.16 s), the self-accelerating decomposition temperature (TSADT=249.12 ℃), the thermal ignition temperature (Tbe =262.31 ℃) and the critical temperature of thermal explosion (Tbp=277.68 ℃), thermal sensitivity probability density function S(T) vs T for DNGTz (infinite cylindrical, spheroidic or infinite platelike) with the radius of 1m surrounded with 300K, the peak temperature (TS(T)max), safety degree (SD), critical thermal explosion ambient temperature (Tacr) and thermal explosion probability (PTE). The thermal safety of the spheroidic sample is found to be better than that of the infinite cylindrical or infinite platelike sample.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

胡拥鹏,赵旭芳,赵宁宁,等. DNGTz的非等温热分解动力学及热安全性[J].含能材料, 2014, 22(6):767-773. DOI:10.11943/j. issn.1006-9941.2014.06.011.
HU Yong-peng, ZHAO Xu-fang, ZHAO Ning-ning, et al. Non-isothermal Thermal Decomposition Kinetics and Thermal Safety of DNGTz[J]. Chinese Journal of Energetic Materials, 2014, 22(6):767-773. DOI:10.11943/j. issn.1006-9941.2014.06.011.

复制
历史
  • 收稿日期: 2013-11-26
  • 最后修改日期: 2014-03-18
  • 录用日期: 2014-04-03
  • 在线发布日期: 2014-12-26
  • 出版日期: