新型纳米晶硬质合金的研究现状及发展趋势

王倩玉 秦明礼 吴昊阳 贾宝瑞 曲选辉

王倩玉, 秦明礼, 吴昊阳, 贾宝瑞, 曲选辉. 新型纳米晶硬质合金的研究现状及发展趋势[J]. 粉末冶金技术, 2022, 40(4): 362-375. doi: 10.19591/j.cnki.cn11-1974/tf.2021040010
引用本文: 王倩玉, 秦明礼, 吴昊阳, 贾宝瑞, 曲选辉. 新型纳米晶硬质合金的研究现状及发展趋势[J]. 粉末冶金技术, 2022, 40(4): 362-375. doi: 10.19591/j.cnki.cn11-1974/tf.2021040010
WANG Qian-yu, QIN Ming-li, WU Hao-yang, JIA Bao-rui, QU Xuan-hui. Research status and development trend of new nanocrystalline cemented carbides[J]. Powder Metallurgy Technology, 2022, 40(4): 362-375. doi: 10.19591/j.cnki.cn11-1974/tf.2021040010
Citation: WANG Qian-yu, QIN Ming-li, WU Hao-yang, JIA Bao-rui, QU Xuan-hui. Research status and development trend of new nanocrystalline cemented carbides[J]. Powder Metallurgy Technology, 2022, 40(4): 362-375. doi: 10.19591/j.cnki.cn11-1974/tf.2021040010

新型纳米晶硬质合金的研究现状及发展趋势

doi: 10.19591/j.cnki.cn11-1974/tf.2021040010
基金项目: 国家自然科学基金资助项目(51774035)
详细信息
    通讯作者:

    E-mail: qinml@mater.ustb.edu.cn (秦明礼)

    wuhaoyang@ustb.edu.cn (吴昊阳)

  • 中图分类号: TG142.71

Research status and development trend of new nanocrystalline cemented carbides

More Information
  • 摘要: 纳米晶硬质合金以其优异的性能在电子信息、汽车制造、航空航天、国防军事等领域被广泛应用。本文概述了近年来纳米晶硬质合金的发展状况,包括新型粘结相纳米晶硬质合金、无粘结相纳米晶硬质合金、梯度纳米晶硬质合金以及涂层纳米晶硬质合金等一系列新型纳米晶硬质合金,展望了纳米晶硬质合金在各个领域的发展前景和研发重点,为现代硬质合金材料及技术的发展提供新思路。
  • 图  1  全球硬质合金产量变化及区域分布图[5]

    Figure  1.  Production change and regional distribution of the cemented carbides in the world[5]

    图  2  纳米晶硬质合金制品:(a)刀具—医用牙钻切口;(b)微钻—PCB电路板钻孔工具;(c)切削刀具—切削飞机发动机采用的高温合金、钛合金;(d)切削刀具—切削汽车发动机采用的球磨铸铁

    Figure  2.  Nanocrystalline cemented carbide products: (a) cutting tools–cutting drill tooth for medicine; (b) micro drill–PCB circuit board drilling tool; (c) cutting tool–cutting superalloy and titanium alloys used in aircraft engines; (d) cutting tool–cutting nodular cast iron used in automobile engines

    图  3  不同Cu含量的WC–Fe–Cu硬质合金横向断裂强度[19](a)和WC–Ni样品场发射扫描电子显微形貌及能谱分析[20](b)

    Figure  3.  Transverse fracture strength of the WC–Fe–Cu cemented carbides with the different Cu contents[19] (a) and the field emission scanning electron microscopy images and the energy spectrum analysis of the WC–Ni samples[20] (b)

    图  4  超细晶无粘结相硬质合金产品[39]:(a)RCCL机械密封环;(b)RCCFN超精密模具

    Figure  4.  Products of the ultrafine cemented carbides with unbonded phase[39]: (a) RCCL mechanical seal ring; (b) RCCFN ultra-precision mold

    图  5  弥散颗粒增韧原理模型:(a)无增韧颗粒模型;(b)单个颗粒增韧模型;(c)整体颗粒增韧模型

    Figure  5.  Toughening principle models of the dispersed particles: (a) non-toughened particle model; (b) single particle toughening model; (c) whole particle toughening model

    图  6  WC–TiC–Al2O3–GNPs横截面扫描电子显微形貌(a)和Ti、Al、W元素能谱分析((b)~(d))[71]

    Figure  6.  SEM micrographs of the WC–TiC–Al2O3–GNPs cross-section surfaces (a) and the EDS maps of Ti, Al, and W elements ((b)~(d))[71]

    图  7  市场上的新型硬质合金刀具涂层[10,75]:(a)多层涂层;(b)梯度涂层;(c)多层AlTiN/TiN纳米涂层

    Figure  7.  New cemented carbide tool coatings on the market[10,75]: (a) multi-layer coating; (b) gradient coating; (c) multi-layer AlTiN/TiN nano-coating

    图  8  超细结构与微米结构的WC–Co涂层硬度和韧性比较[76](a)及三种不同涂层体系(不同碳化物粒径:2.5 μm,1.0 μm, 0.1 μm)的扫描电子显微断面形貌((b)~(d))[77]

    Figure  8.  Hardness and toughness of the WC–Co coatings with the ultra-fine structure and micro structure (a)[76] and the cross section SEM images of three different coating systems (the different carbide particle size of 2.5 μm, 1.0 μm, and 0.1 μm) ((b)~(d))[77]

    表  1  不同晶粒度WC硬质合金刀具的性能[7]

    Table  1.   Properties of the WC cemented carbide tools with the different grain sizes[7]

    WC硬质合金刀具牌号WC晶粒度 / μm硬度,HRA断裂韧性 / (MPa·m1/2)密度 / (g·cm−3)
    YH6F0.1396.19.514.7
    YU060.3093.89.114.7
    YF060.5091.58.814.9
    YL101.7090.97.914.9
    下载: 导出CSV

    表  2  按WC晶粒尺寸对硬质合金进行分类[7]

    Table  2.   Categorization of cemented carbides by WC average grain size[7]

    类别WC平均晶粒度 / μm
    瑞典山特维克公司英国与德国标准协会
    纳米0.1~0.3<0.2
    超细0.3~0.50.2~0.5
    亚微0.5~0.90.5~0.8
    细颗粒1.0~1.30.5~1.3
    中颗粒1.4~2.01.3~2.5
    中粗颗粒2.1~3.4
    粗颗粒3.5~4.92.5~6.0
    超粗颗粒5.0~7.9>6.0
    特粗颗粒8.0~14.0
    下载: 导出CSV

    表  3  硬质合金中常见粘结剂的分类及性能

    Table  3.   Classification and properties of the common binders in cemented carbides

    分类粘结相性能
    金属粘结剂Co[17]对WC具有良好的润湿性和随温度变化的溶解度,有助于烧结;WC–Co硬质合金的硬度、耐腐蚀性、抗氧化性和高温性能与钴含量(质量分数)成反比;资源贫乏、对环境不友好。
    Fe[18]抑制WC晶粒生长,对环境友好;对WC的润湿性差,易生成脆性相W3Fe3C。
    Mn[17]提高对WC的润湿性;一种强的奥氏体稳定剂;Fe–Mn合金在晶体结构、熔化温度等方面表现出与Co相似的特性,并具有较高的强度和耐磨性;环保无毒、低成本。
    Cu[19]提高对WC的润湿性;降低WC–Fe合金的熔点;WC–Fe–Cu硬质合金比WC–Fe合金具有更好的致密化行为和更高的断裂韧性。
    Ni[20]对WC具有良好的润湿性,优异的耐腐蚀性/抗氧化性;对环境友好、低成本;此外,Ni还能通过防止碳化物颗粒团聚而形成具有细颗粒的均匀结构。
    Al[21]促进烧结过程,极大阻碍WC晶粒的生长。
    Mo[20]有利于抑制晶粒生长和增加断裂韧性,但对硬度没有明显影响;容易与碳形成碳化物,能起到一定的析出强化效应,还能改善合金耐热性能;Mo的添加量通常较低,过量添加会降低合金的抗氧化性。
    Cr[17]有利于抑制晶粒生长,并能显著提高材料的耐腐蚀性和抗氧化性;Cr的加入会增加合金的碳敏感性。
    高熵合金[22]具有高的硬度、断裂韧性、耐磨性和优异的耐高温软化性、耐腐蚀性和抗氧化性等潜在性能,是一种由等摩尔或近等摩尔比的多种主要元素组成的合金。
    金属间化合物粘结剂FeAl[23]对WC具有良好的润湿性;优良的耐腐蚀性/抗氧化性;优异的高温性能、耐磨性;低成本、低密度、对环境友好。
    Ni3Al[24]对WC具有良好的润湿性;具有极快的加工硬化、高弹性模量、高硬度、高熔点、低密度;优异的耐腐蚀性/抗氧化性能和高温性能。
    TiAl3/TiAl[25]TiAl3/TiAl掺杂能抑制晶粒长大和诱发裂纹偏转,在不影响硬度的前提下,大幅度提高韧性。
    AlN[26]AlN的加入抑制了W2C的形成,促进固溶相形成,减小晶粒尺寸,从而提高了合金的强度。
    下载: 导出CSV

    表  4  采用不同金属粘结剂制备的纳米晶硬质合金性能

    Table  4.   Properties of the nanocrystalline cemented carbides prepared with the different metal binders

    材料相对密度 / %WC晶粒尺寸 / μm硬度 / (kg·mm2)断裂韧性 / (MPa·m1/2)
    WC–8%Co[30](质量分数)99.200.330194513.30
    WC–10%Co[22](质量分数)0.15019108.10
    WC–15%Co[28](质量分数)99.000.720147012.33
    WC–8%Ni[30](质量分数)98.500.300194813.00
    WC–10%Ni[20](质量分数)99.700.500178317.27
    WC–15%Fe–Ni[31](质量分数)99.681.000148815.10
    WC–15%Fe–Ni–Co[28](质量分数)99.000.680148016.23
    WC–5%Fe–Al[23](体积分数)97.500.09225499.60
    WC–10%Fe–Al[23](体积分数)98.200.097241411.00
    WC–10%Mo[20](质量分数)99.601.00021518.77
    WC–5%Al[21](体积分数)98.000.06927007.10
    WC–10%Al[21](体积分数)98.000.15423507.40
    WC–15%Al[21](体积分数)97.500.366170011.90
    WC–10%HEAs[22](质量分数)0.15022318.33
    WC–20%HEAs[22](质量分数)0.150235812.10
    下载: 导出CSV

    表  5  不同化合物对无粘结相硬质合金性能的影响

    Table  5.   Effect of the different compounds on the properties of BCC

    化合物种类作用
    促进
    致密化
    抑制晶
    粒生长
    增韧
    过渡金属
    碳化物
    TiC[44]
    TaC[45]
    SiC[46]
    VC[47]
    Mo2C[48]
    Cr3C2[17]
    NbC[45]
    ZrC[45]
    HfC[49]
    金属氧化物Al2O3[50]
    ZrO2[51]
    Y2O3[52]
    La2O3[53]
    MgO[54]
    其他化合物Si3N4[49]
    TiB2[49]
    注:表中“√”代表有作用,“—”代表无作用。
    下载: 导出CSV

    表  6  不同晶粒生长抑制剂的作用[4,35,58]

    Table  6.   Effect of the different grain growth inhibitors[4,35,58]

    晶粒生长抑制剂作用
    VC抑制WC晶粒生长。
    Cr3C2抑制WC晶粒生长,改善合金耐腐性能。
    TaC抑制WC晶粒生长,提高合金的红硬性、耐磨性能、抗氧化性能、高温强度、冲击韧性、抗热震性。
    NbC抑制WC晶粒生长,提高合金的红硬性和抗热冲击性能。
    TiC抑制WC晶粒生长,改善合金在高温下的化学稳定性、阻碍高温下铁基(钢铁)被加工件与硬质合金切削刀具之间的扩散行为。
    Mo2C抑制WC晶粒生长,改善粘结相对含Ti(C,N)的润湿性。
    ZrC抑制WC晶粒生长。
    HfC抑制WC晶粒生长。
    下载: 导出CSV

    表  7  添加不同晶粒生长抑制剂的无粘结相纳米晶硬质合金的性能

    Table  7.   Properties of the binderless nanocrystalline cemented carbides with the different grain growth inhibitors

    材料相对密度 / %WC晶粒尺寸 / nm硬度,HV断裂韧性 / (MPa·m1/2)
    WC–1%VC[47](质量分数)96.528027954.2
    WC–1%VC[59](质量分数)99.827225856.9
    WC–1%Cr3C2[59](质量分数)100.027726057.2
    WC–1%TaC[45](质量分数)99.720225706.9
    WC–1%NbC[45](质量分数)99.621425406.6
    WC–20%TiC[44](原子数分数)98.520020326.3
    WC–20%TiC[60](原子数分数)99.020022407.5
    WC–6%Mo2C[61](质量分数)99.025024008.4
    WC–1%Mo2C[45](质量分数)100.018326306.6
    WC–1%ZrC[45](质量分数)98.823624206.5
    下载: 导出CSV

    表  8  无粘结相硬质合金的传统增韧方法及机理[35-39,45,49,61]

    Table  8.   Traditional toughening methods and mechanism of binderless cemented carbide[35-39,45,49,61]

    增韧方法机理举例
    颗粒弥散
    增韧
    (1)扩展裂纹前的颗粒引起的裂纹偏转;(2)颗粒引起的裂纹桥接;(3)裂纹前缘与颗粒之间的相互作用;(4)由于基体和弥散颗粒的热膨胀系数不匹配以及(5)晶粒尺寸不匹配而产生的热残余应力场。Al2O3、MgO、TiC、SiC、Mo2C和ZrC颗粒
    相变增韧由硬质相基体中颗粒夹杂在断裂过程中的应力诱导相变而产生,主要取决于裂纹尖端拉伸应力场中亚稳四方氧化锆相向稳定单斜氧化锆相的转变。ZrO2
    晶须增韧(1)晶须拔出增韧:晶须在外界负载作用下从基质中拔出时,因界面摩擦而消耗掉一部分外界负载能量,从而达到增韧目的;(2)裂纹偏转增韧:当裂纹尖端遇到弹性模量大于基质的第二相时,裂纹将偏离原来的前进方向,沿两相界面或在基质内扩展。由于裂纹的非平面断裂比平面断裂具有更大的断裂表面,因此可吸收更多外界能量,从而起到增韧作用;(3)晶须桥接增韧:当基质断裂时,晶须可承受外界载荷并在断开的裂纹面之间起到桥梁连接作用。桥接的晶须可对基质产生使裂纹闭合的力,消耗外界载荷做功,从而提高材料韧性。Al2O3、MgO、SiC、Si3N4、TiC和TiB2晶须
    下载: 导出CSV

    表  9  WC–12Co涂层性能[77]

    Table  9.   Properties of the WC–12Co coatings[77]

    碳化物粒径 / μm硬度,HV1孔隙率 / %厚度 / μm
    2.5991±612.5±0.9533±23
    1.01145±931.6±0.4581±13
    0.11210±361.0±0.2566±8
    下载: 导出CSV

    表  10  纳米金刚石涂层与微米金刚石涂层性能比较[79]

    Table  10.   Performance comparison of the nano diamond coatings and micro diamond coatings[79]

    性能晶粒尺寸 / nm表面粗糙度 / nm硬度 / GPa摩擦系数弹性模量 / GPa
    纳米金刚石涂层3~20<1939~780.05~0.10384
    微米金刚石涂层几十微米粗糙85~1000.10354~535
    下载: 导出CSV
  • [1] Norgren S, García J, Blomqvist A, et al. Trends in the P/M hard metal industry. Int J Refract Met Hard Mater, 2015, 48: 31 doi: 10.1016/j.ijrmhm.2014.07.007
    [2] Konyashin I, Klyachko L I. History of cemented carbides in the Soviet Union. Int J Refract Met Hard Mater, 2015, 49: 9 doi: 10.1016/j.ijrmhm.2014.08.011
    [3] Yang Q M, Yang J G, Su W, et al. Research progress of nano/ultrafine WC–Co cemented carbides. Rare Met Cement Carb, 2018, 46(1): 76

    羊求民, 羊建高, 苏伟, 等. 纳米/超细晶WC–Co类硬质合金的研究进展. 稀有金属与硬质合金, 2018, 46(1): 76
    [4] Huang B Y, Wei W F, Li S L. Development of modern powder metallurgy materials and technology. Chin J Nonferrous Met, 2019, 29(9): 1917 doi: 10.19476/j.ysxb.1004.0609.2019.09.08

    黄伯云, 韦伟峰, 李松林, 等. 现代粉末冶金材料与技术进展. 中国有色金属学报, 2019, 29(9): 1917 doi: 10.19476/j.ysxb.1004.0609.2019.09.08
    [5] Li M, Gong M F, Zhang C Y, et al. Research progress of sintering technique of ultrafine and nano WC–Co cemented carbides. Mater Rep, 2020, 34(8): 15138

    李萌, 弓满锋, 张程煜, 等. 超细、纳米晶WC–Co硬质合金烧结技术的研究现状. 材料导报, 2020, 34(8): 15138
    [6] Hu Y B, Pang Q L, Peng Y P. The development status and outlook of cemented carbide industry in China. Superhard Mater Eng, 2017, 29(4): 55 doi: 10.3969/j.issn.1673-1433.2017.04.013

    胡耀斌, 庞前列, 彭毅萍. 我国硬质合金产业的发展现状及展望. 超硬材料工程, 2017, 29(4): 55 doi: 10.3969/j.issn.1673-1433.2017.04.013
    [7] Becher P F. Microstructural design of toughened ceramics. J Am Ceram Soc, 1991, 74(2): 255 doi: 10.1111/j.1151-2916.1991.tb06872.x
    [8] Xiong J C, Zhou Q, Li Y G, et al. Research progress of WC-based cemented carbide tool materials. Diamond Abras Eng, 2019, 39(2): 95

    熊建超, 邹芹, 李艳国, 等. WC基硬质合金刀具材料研究进展. 金刚石与磨料磨具工程, 2019, 39(2): 95
    [9] Qi Z X, Chen X M. Research progress of cemented carbide cutting tools. Mater Res Appl, 2019, 13(4): 347 doi: 10.3969/j.issn.1673-9981.2019.04.015

    祁志旭, 陈兴媚. 硬质合金刀具研究进展. 材料研究与应用, 2019, 13(4): 347 doi: 10.3969/j.issn.1673-9981.2019.04.015
    [10] Wu C X, Nie H B, Xiao M D, et al. Application of nanomaterials on hardmetals. Mater China, 2014, 33(1): 39 doi: 10.7502/j.issn.1674-3962.2014.01.07

    吴冲浒, 聂洪波, 肖满斗, 等. 纳米材料在硬质合金中的应用. 中国材料进展, 2014, 33(1): 39 doi: 10.7502/j.issn.1674-3962.2014.01.07
    [11] Tao G L, Jiang X Q, Huang J. Research status and developing trend of cemented carbide tool. Metall Funct Mater, 2011, 18(3): 79

    陶国林, 蒋显全, 黄靖. 硬质合金刀具材料发展现状与趋势. 金属功能材料, 2011, 18(3): 79
    [12] Xu W. An overview of the effect of inhibitors on properties of superfine cemented carbide. World Nonferrous Met, 2019(7): 260 doi: 10.3969/j.issn.1002-5065.2019.07.154

    徐伟. 抑制剂对超细晶硬质合金性能影响概述. 世界有色金属, 2019(7): 260 doi: 10.3969/j.issn.1002-5065.2019.07.154
    [13] Xu T. Development trend analysis of advanced products and new materials of cemented carbide. Cement Carb, 2011, 28(6): 395 doi: 10.3969/j.issn.1003-7292.2011.06.010

    徐涛. 硬质合金高端产品及新材料发展趋势分析. 硬质合金, 2011, 28(6): 395 doi: 10.3969/j.issn.1003-7292.2011.06.010
    [14] Wu Q S, Zhang S Q, Chen C Y, et al. Industrialized manufacturing technology of homogeneous nanocrystalline cemented carbide. Xiamen: Xiamen Golden Egret Special Alloy Co. , Ltd. , 2017

    吴其山, 张守全, 陈成艺, 等. 匀相纳米晶硬质合金工业化制造技术. 厦门: 厦门金鹭特种合金有限公司, 2017
    [15] García J, Collado Ciprés V, Blomqvist A, et al. Cemented carbide microstructures: a review. Int J Refract Met Hard Mater, 2019, 80: 40 doi: 10.1016/j.ijrmhm.2018.12.004
    [16] Long J Z, Lu B Z, Yi M Z, et al. Research progress on cemented carbide with novel binders. Cement Carb, 2015, 32(3): 204

    龙坚战, 陆必志, 易茂中, 等. 新型粘结相硬质合金的研究进展. 硬质合金, 2015, 32(3): 204
    [17] Sun J L, Zhao J, Gong F, et al. Development and application of WC-based alloys bonded with alternative binder phase. Crit Rev Solid State Mater Sci, 2019, 44(3): 211 doi: 10.1080/10408436.2018.1483320
    [18] Wittmann B, Schubert W D, Lux B. Hard materials poster: Hardmetals with iron-based binder // European PM Conference Proceedings. Lausanne, 2002: 303
    [19] Zhao Z Y, Liu J W, Tang H G, et al. Investigation on the mechanical properties of WC–Fe–Cu hard alloys. J Alloys Compd, 2015, 632: 729 doi: 10.1016/j.jallcom.2015.01.300
    [20] Ghasali E, Ebadzadeh T, Alizadeh M, et al. Mechanical and microstructural properties of WC-based cermets: A comparative study on the effect of Ni and Mo binder phases. Ceram Int, 2018, 44(2): 2283 doi: 10.1016/j.ceramint.2017.10.189
    [21] Shon I J. Effect of Al on sintering and mechanical properties of WC–Al composites. Ceram Int, 2016, 42(15): 17884 doi: 10.1016/j.ceramint.2016.07.050
    [22] Zhou P F, Xiao D H, Yuan T C. Comparison between ultrafine-grained WC–Co and WC–HEA-cemented carbides. Powder Metall, 2017, 60(1): 1 doi: 10.1080/00325899.2016.1260903
    [23] Shon I J. Rapid consolidation of nanostructured WC–FeAl hard composites by high-frequency induction heating and its mechanical properties. Int J Refract Met Hard Mater, 2016, 61: 185 doi: 10.1016/j.ijrmhm.2016.09.013
    [24] Li X Q, Zhang M N, Zheng D H, et al. The oxidation behavior of the WC–10wt. % Ni3Al composite fabricated by spark plasma sintering. J Alloys Compd, 2015, 629: 148
    [25] Kwak B W, Song J H, Kim B S, et al. Mechanical properties and rapid sintering of nanostructured WC and WC–TiAl3 hard materials by the pulsed current activated heating. Int J Refract Met Hard Mater, 2016, 54: 244 doi: 10.1016/j.ijrmhm.2015.08.003
    [26] Ren X Y, Peng Z J, Peng Y, et al. Ultrafine binderless WC-based cemented carbides with varied amounts of AlN nano-powder fabricated by spark plasma sintering. Int J Refract Met Hard Mater, 2013, 41: 308 doi: 10.1016/j.ijrmhm.2013.05.002
    [27] Schröter K. Sintered Cemented Carbide and Production Process: Gremany Patent, 420689. 1925-10-30
    [28] Chang S H, Chang M H, Huang K T. Study on the sintered characteristics and properties of nanostructured WC–15 wt%(Fe–Ni–Co) and WC–15 wt% Co hard metal alloys. J Alloys Compd, 2015, 649: 89 doi: 10.1016/j.jallcom.2015.07.119
    [29] Zhao Z Y, Zhu D G, Gao Y, et al. Influence of Ni and ZrO2 contents on sintering and mechanical properties of WC–2wt. %ZrO2–1wt. %Ni composites. Ceram Int, 2019, 45(9): 11241
    [30] Kim H C, Shon I J, Yoon J K, et al. Comparison of sintering behavior and mechanical properties between WC–8Co and WC–8Ni hard materials produced by high-frequency induction heating sintering. Met Mater Int, 2006, 12(2): 141 doi: 10.1007/BF03027470
    [31] Chang S H, Chen S L. Characterization and properties of sintered WC–Co and WC–Ni–Fe hard metal alloys. J Alloys Compd, 2014, 585: 407 doi: 10.1016/j.jallcom.2013.09.188
    [32] Karimi H, Hadi M, Ebrahimzadeh I, et al. High-temperature oxidation behaviour of WC–FeAl composite fabricated by spark plasma sintering. Ceram Int, 2018, 44(14): 17147 doi: 10.1016/j.ceramint.2018.06.168
    [33] Zhang M N, Dupuy A D, Li J M, et al. High temperature compressive properties and microstructure of WC–Ni3Al cermets prepared by spark plasma sintering. Vacuum, 2020, 175: 109281 doi: 10.1016/j.vacuum.2020.109281
    [34] Jung G N, Kim B S, Yoon J K, et al. Properties and rapid sintering of nanostructured WC and WC–TiAl hard materials by the pulsed current activated heating. J Ceram Process Res, 2016, 17(4): 295
    [35] Zhou T, Xia T F, Gao L X, et al. Technical progress of binderless WC-based nanostructured cemented carbide. Cement Carb, 2014, 31(2): 120

    周腾, 夏铁锋, 高立新, 等. 超细无粘结相WC基陶瓷的研究进展. 硬质合金, 2014, 31(2): 120
    [36] Zhang T Q, Nie H B, Li W Q, et al. Research progress and application of binderless cemented carbides. China Tungsten Ind, 2018, 33(5): 64 doi: 10.3969/j.issn.1009-0622.2018.05.011

    张太全, 聂洪波, 李文强, 等. 无粘结相硬质合金研究进展与应用. 中国钨业, 2018, 33(5): 64 doi: 10.3969/j.issn.1009-0622.2018.05.011
    [37] Liu L C, Lou L, Wu S N, et al. Research progress and preparation of binderless cemented carbide. Dev Appl Mater, 2015, 30(4): 93

    刘璐超, 娄丽, 吴胜男, 等. 无粘结剂硬质合金研究进展与制备. 材料开发与应用, 2015, 30(4): 93
    [38] Hu T, Hu Z J, Guo S B, et al. Research progress of WC-based cemented carbide cutting tool materials without bonding phase. Tool Eng, 2019, 53(2): 7 doi: 10.3969/j.issn.1000-7008.2019.02.002

    胡涛, 胡忠举, 郭世柏, 等. 无粘结相WC基硬质合金刀具材料的研究现状与前景. 工具技术, 2019, 53(2): 7 doi: 10.3969/j.issn.1000-7008.2019.02.002
    [39] Liu C. The development and prospect of binderless carbide. Mater China, 2016, 35(8): 622

    刘超. 无粘结相硬质合金的发展及展望. 中国材料进展, 2016, 35(8): 622
    [40] El-Eskandarany M S. Fabrication of nanocrystalline WC and nanocomposite WC–MgO refractory materials at room temperature. J Alloys Compd, 2000, 296(1-2): 175 doi: 10.1016/S0925-8388(99)00508-3
    [41] Luo K, Chen Q, Cai Y X. Ultrafine binderless tungsten carbide prepared by spark plasma sintering process. Mater Res Appl, 2010, 4(4): 534 doi: 10.3969/j.issn.1673-9981.2010.04.069

    罗锴, 陈强, 蔡一湘. 放电等离子烧结制备超细碳化钨材料. 材料研究与应用, 2010, 4(4): 534 doi: 10.3969/j.issn.1673-9981.2010.04.069
    [42] Kim H C, Shon I J, Yoon J K, et al. Consolidation of ultra fine WC and WC–Co hard materials by pulsed current activated sintering and its mechanical properties. Int J Refract Met Hard Mater, 2007, 25(1): 46 doi: 10.1016/j.ijrmhm.2005.11.004
    [43] Kim H C, Shon I J, Yoon J K, et al. One step synthesis and densification of ultra-fine WC by high-frequency induction combustion. Int J Refract Met Hard Mater, 2006, 24(3): 202 doi: 10.1016/j.ijrmhm.2005.04.004
    [44] Kim H C, Kim D K, Woo K D, et al. Consolidation of binderless WC–TiC by high frequency induction heating sintering. Int J Refract Met Hard Mater, 2008, 26(1): 48 doi: 10.1016/j.ijrmhm.2007.01.006
    [45] Poetschke J, Richter V, Michaelis A. Influence of small additions of MeC on properties of binderless tungsten carbide // Euro PM 2014 International Conference and Exhibition. Salzburg, 2014
    [46] Chao Y J, Liu J. Study of WC ceramic tool material by SiC whisker toughening. Rare Met Cement Carb, 2005, 33(4): 13
    [47] Huang S G, Vanmeensel K, Van der Biest O, et al. Binderless WC and WC–VC materials obtained by pulsed electric current sintering. Int J Refract Met Hard Mater, 2008, 26(1): 41 doi: 10.1016/j.ijrmhm.2007.01.002
    [48] Nino A, Nakaibayashi Y, Sugiyama S, et al. Effect of Mo2C addition on the microstructures and mechanical properties of WC–SiC ceramics. Int J Refract Met Hard Mater, 2017, 64: 35 doi: 10.1016/j.ijrmhm.2016.12.018
    [49] Sun J L, Zhao J, Huang Z F, et al. A review on binderless tungsten carbide: development and application. Nano-Micro Lett, 2020, 12(1): 162 doi: 10.1007/s40820-020-00505-2
    [50] Ahmad I, Islam M, Subhani T, et al. Toughness enhancement in graphene nanoplatelet/SiC reinforced Al2O3 ceramic hybrid nanocomposites. Nanotechnology, 2016, 27(42): 425704 doi: 10.1088/0957-4484/27/42/425704
    [51] Zheng D H, Li X Q, Li Y Y, et al. ZrO2(3Y) toughened WC composites prepared by spark plasma sintering. J Alloys Compd, 2013, 572: 62 doi: 10.1016/j.jallcom.2013.03.259
    [52] Wang J F, Zuo D W, Zhu L, et al. Effects and influence of Y2O3 addition on the microstructure and mechanical properties of binderless tungsten carbide fabricated by spark plasma sintering. Int J Refract Met Hard Mater, 2018, 71: 167 doi: 10.1016/j.ijrmhm.2017.11.016
    [53] Ren X Y, Peng Z J, Wang C B, et al. Influence of nano-sized La2O3 addition on the sintering behavior and mechanical properties of WC–La2O3 composites. Ceram Int, 2015, 41(10): 14811 doi: 10.1016/j.ceramint.2015.08.002
    [54] Fan B W, Zhu S G, Ding H, et al. Influence of MgO whisker addition on microstructures and mechanical properties of WC–MgO composite. Mater Chem Phys, 2019, 238: 121907 doi: 10.1016/j.matchemphys.2019.121907
    [55] Petzow G, Kaysser W A. Sintering with additives. Dordrecht: Springer, 1990
    [56] Nino A, Izu Y, Sekine T, et al. Effects of ZrC and SiC addition on the microstructures and mechanical properties of binderless WC. Int J Refract Met Hard Mater, 2017, 69: 259 doi: 10.1016/j.ijrmhm.2017.09.002
    [57] El-Eskandarany M S. Fabrication and characterizations of new nanocomposite WC/Al2O3 materials by room temperature ball milling and subsequent consolidation. J Alloys Compd, 2005, 391(1-2): 228 doi: 10.1016/j.jallcom.2004.08.064
    [58] Wang M C, Zhao Z W, Yang D Q, et al. Research progress in preparation of ultrafine (nano-structured) cemented carbide. Mater Rev, 2015, 29(Suppl 1): 26

    王明超, 赵志伟, 杨德青, 等. 超细(纳米)硬质合金的制备研究进展. 材料导报, 2015, 29(增刊1): 26
    [59] Poetschke J, Richter V, Holke R. Influence and effectivity of VC and Cr3C2 grain growth inhibitors on sintering of binderless tungsten carbide. Int J Refract Met Hard Mater, 2012, 31: 218 doi: 10.1016/j.ijrmhm.2011.11.006
    [60] Kim H C, Kim D K, Ko I Y, et al. Sintering behavior and mechanical properties of binderless WC–TiC produced by pulsed current activated sintering. J Ceram Process Res, 2007, 8(2): 91
    [61] Engqvist H, Botton G A, Axén N, et al. Microstructure and abrasive wear of binderless carbides. J Am Ceram Soc, 2000, 83(10): 2491
    [62] Taya M, Hayashi S, Kobayashi A S, et al. Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress. J Am Ceram Soc, 1990, 73(5): 1382 doi: 10.1111/j.1151-2916.1990.tb05209.x
    [63] Radajewski M, Schimpf C, Krüger L. Study of processing routes for WC–MgO composites with varying MgO contents consolidated by FAST/SPS. J Eur Ceram Soc, 2017, 37(5): 2031 doi: 10.1016/j.jeurceramsoc.2017.01.005
    [64] Basu B. Toughening of yttria-stabilised tetragonal zirconia ceramics. Int Mater Rev, 2005, 50(4): 239 doi: 10.1179/174328005X41113
    [65] Becher P F, Hsueh C H, Angelini P, et al. Toughening behavior in whisker-reinforced ceramic matrix composites. J Am Ceram Soc, 1988, 71(12): 1050 doi: 10.1111/j.1151-2916.1988.tb05791.x
    [66] Li Y Y, Zheng D H, Li X Q, et al. Cr3C2 and VC doped WC–Si3N4 composites prepared by spark plasma sintering. Int J Refract Met Hard Mater, 2013, 41: 540 doi: 10.1016/j.ijrmhm.2013.07.004
    [67] Ouyang C X, Zhu S G, Dong W W, et al. Microstructure and mechanical properties of hot-pressed WC–MgO composites with Cr3C2 or VC addition. Int J Refract Met Hard Mater, 2013, 41: 41 doi: 10.1016/j.ijrmhm.2013.01.015
    [68] Zhang X X, Zhu S G, Shi T Y, et al. Preparation, mechanical and tribological properties of WC–Al2O3 composite doped with graphene platelets. Ceram Int, 2020, 46(8): 10457 doi: 10.1016/j.ceramint.2020.01.045
    [69] Shi L Y, Zhang S Q, Huang J H. Advances information of WC–Co functionally graded hard metals. Powder Metall Technol, 2010, 28(4): 305

    史留勇, 张守全, 黄继华. WC–Co功能梯度硬质合金研究进展. 粉末冶金技术, 2010, 28(4): 305
    [70] Dong D Q, Xiang X, Gu J B. The fabrication technique and research status of gradient cemented carbide. Cement Carb, 2019, 36(5): 392

    董定乾, 向新, 顾金宝, 等. 梯度硬质合金制备技术及研究现状. 硬质合金, 2019, 36(5): 392
    [71] Sun J L, Zhao J, Chen M J, et al. Determination of microstructure and mechanical properties of functionally graded WC–TiC–Al2O3–GNPs micro-nano composite tool materials via two-step sintering. Ceram Int, 2017, 43(12): 9276 doi: 10.1016/j.ceramint.2017.04.086
    [72] Scuor N, Lucchini E, Maschio S, et al. Wear mechanisms and residual stresses in alumina-based laminated cutting tools. Wear, 2005, 258(9): 1372 doi: 10.1016/j.wear.2004.10.004
    [73] Xu Z F, Zhou X K, Wang K, et al. Fabrication of ultrafine-grained gradient cemented carbide by SPS pre-sintered method. J Northeastern Univ Nat Sci, 2018, 39(11): 1593 doi: 10.12068/j.issn.1005-3026.2018.11.015

    许智峰, 周向葵, 王凯, 等. SPS预烧结制备超细晶梯度硬质合金. 东北大学学报(自然科学版), 2018, 39(11): 1593 doi: 10.12068/j.issn.1005-3026.2018.11.015
    [74] Konyashin I, Ries B, Lachmann F, et al. Gradient WC–Co hardmetals: Theory and practice. Int J Refract Met Hard Mater, 2013, 36: 10 doi: 10.1016/j.ijrmhm.2011.12.010
    [75] Zhao S L, Zhang J, Liu C S. Cutting performance and application of coated cutting tools. Mater Rev, 2008, 22(11): 62 doi: 10.3321/j.issn:1005-023X.2008.11.015

    赵时璐, 张钧, 刘常升. 涂层刀具的切削性能及其应用动态. 材料导报, 2008, 22(11): 62 doi: 10.3321/j.issn:1005-023X.2008.11.015
    [76] Wang H B, Song X Y, Liu X M, et al. Fabrication of cemented carbide coating with in-situ synthesized WC–Co composite powder. Surf Technol, 2016, 45(9): 10

    王海滨, 宋晓艳, 刘雪梅, 等. WC–Co复合粉末的原位合成及于硬质合金涂层制备中的应用. 表面技术, 2016, 45(9): 10
    [77] Tillmann W, Stangier D, Hagen L, et al. Influence of the WC grain size on the properties of PVD/HVOF duplex coatings. Surf Coat Technol, 2017, 328: 326 doi: 10.1016/j.surfcoat.2017.08.064
    [78] Jia Z C, Chen F X, Wu C. Progress in cemented carbide field. Powder Metall Ind, 2010, 20(3): 52 doi: 10.3969/j.issn.1006-6543.2010.03.011

    贾佐诚, 陈飞雄, 吴诚. 硬质合金新进展. 粉末冶金工业, 2010, 20(3): 52 doi: 10.3969/j.issn.1006-6543.2010.03.011
    [79] Yin C, Mao S W. Research progress of CVD diamond coating for cemented carbide cutting tool. Cement Carb, 2016, 33(4): 275

    尹超, 毛善文. CVD金刚石涂层硬质合金刀具研究进展. 硬质合金, 2016, 33(4): 275
    [80] Polini R, Barletta M, Cristofanilli G. Wear resistance of nano-and micro-crystalline diamond coatings onto WC–Co with Cr/CrN interlayers. Thin Solid Films, 2010, 519(5): 1629 doi: 10.1016/j.tsf.2010.07.128
  • 加载中
图(8) / 表(10)
计量
  • 文章访问数:  2035
  • HTML全文浏览量:  337
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-26
  • 刊出日期:  2022-08-12

目录

    /

    返回文章
    返回