埃达克质岩与Cu-Au成矿作用关系的初步探讨

王元龙 张旗 王强 刘红涛 王焰. 埃达克质岩与Cu-Au成矿作用关系的初步探讨[J]. 岩石学报, 2003, 19(3): 543-550.
引用本文: 王元龙 张旗 王强 刘红涛 王焰. 埃达克质岩与Cu-Au成矿作用关系的初步探讨[J]. 岩石学报, 2003, 19(3): 543-550.
WANG YuanLong,ZHANG Qi,WANG Qiang,LIU HongTao and WANG Yan Institute of Geology and Geophysics,Chinese Acedamy of Sciences,Beijing 100029,China Guangzhou Institute of Geochemistry,Chinese Acedamy of Sciences,Guangzhou 510640,China Department of Earth Sciences,The University of Hong Kong,Hong Kong,China. Study on adakitic rock and Cu-Au mineralization.[J]. Acta Petrologica Sinica, 2003, 19(3): 543-550.
Citation: WANG YuanLong,ZHANG Qi,WANG Qiang,LIU HongTao and WANG Yan Institute of Geology and Geophysics,Chinese Acedamy of Sciences,Beijing 100029,China Guangzhou Institute of Geochemistry,Chinese Acedamy of Sciences,Guangzhou 510640,China Department of Earth Sciences,The University of Hong Kong,Hong Kong,China. Study on adakitic rock and Cu-Au mineralization.[J]. Acta Petrologica Sinica, 2003, 19(3): 543-550.

埃达克质岩与Cu-Au成矿作用关系的初步探讨

  • 基金项目:

    国家“973”项目“大规模成矿作用与大型矿集区预测”(G1999043206-05),中国科学院知识创新工程基金(KZCX1-07)

  • 近来的研究发现,埃达克质岩与Au、Cu、Mo等浅成低温热液矿床及斑岩矿床有密切的关系。我们的研究表明:(1)我国的斑岩铜矿大多与埃达克质岩有关,如德兴、沙溪、多宝山、乌奴格吐山和新近发现的东疆土屋斑岩铜矿等,有些被划归与富碱侵入岩或A型花岗岩有关的斑岩铜矿,如玉龙,也具有埃达克质岩的地球化学特征;(2)华北地区的Au矿床大多与埃达克质岩有关,最典型的如胶东和小秦岭;(3)长江中下游地区的Cu、Au、Mo矿床的岩浆岩大多为埃达克质岩。埃达克质岩与成矿作用之所以密切相关,其原因在于它们在地壳深部形成的条件和环境类似,这就为Au、Cu、Mo等的找矿开辟了一个新的思路。埃达克质岩浆是玄武质岩石在高压、高温和含水条件下熔融形成的,上述条件有利于Cu、Au、Mo等金属元素溶解进入熔体。关于找矿方向,文中指出3点:(1)埃达克质岩发育的地区可能是矿床聚集的地区;(2)与消减作用有关的埃达克岩更有利于成矿元素的富集,对于中国来说,晚元古宙-古生代的古亚洲洋造山带内消减作用广泛发育,有巨大的找矿前景;(3)找矿工作应围绕埃达克质岩体及周围地质体进行。
  • 加载中
  • [1]

    [1]Atherton M P, Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362: 144-146

    [2]

    [2]Bi Xianwu, Hu Ruizhong, Ye Zaojun, Shao Shuxun. 2000. Relation between A-type granites and copper mineralization as exemplified by the Machangqing Cu deposit. Science in China (D), 43: 93-102(in Chinese)

    [3]

    [3]Dai Z X. 1996. Supergiany ore deposits (areas) in the world. In: Chinese Institute of Geology and Mineral Resources Information. Geological Sciences and Mineral Resources for the 21st Century. Beijing: Geological Publishing House, 34-42(in Chinese)

    [4]

    [4]Defant M J, Clark L F, Stewart R H et al. 1991. Andesite and dacite genesis via contrasting processes: the geology and geochemistry of EI Valle Volcano, Panama. Contrib. Mineral. Petrol., 106: 309-324

    [5]

    [5]Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subduction lithosphere. Nature, 347: 662-665

    [6]

    [6]Defant M J, Kepezhinskas P. 2001. Adakites: a review of slab melting and the case for a slab-melt component in arcs. In: Symposium on adakite-like rocks and their geodynamic significance(abstract). Beijing, China, 2001/1-2/Dec. 4-6

    [7]

    [7]Defant M J, Xu J F, Kepezhinskas P, Wang Q, Zhang Q, Xiao L. 2002. Adakites: some variations on a theme. Acta Petrologica Sinica, 18(2): 129-142

    [8]

    [8]Drummond M S, Defant M J. 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparison. J. Geophys. Res., 95: 21503-21521

    [9]

    [9]Gromet L P, Silver L T. 1987. REE variations across the Peninsular Ranges Batholith: implications for batholithic petrogenesis and crustal growth in magmatic arcs. J. Petrol., 28: 75-125

    [10]

    [10]Gutscher M A, Maury R, Eissen J, et al. 2000. Can slab melting be caused by flat subduction? Geology, 28: 535~538

    [11]

    [11]Hedenduist J W, Lowenstern J B. 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370: 519~527

    [12]

    [12]Hou Z Q, Mo X X, Gao Y F, Qu X M, Meng X J. 2003. Adakite, a possible host rock for porphyry copper deposits: case studies of porphyry copper belts in Tibetan Plateau and in northern Chile. Mineral Deposits, 22(1): 1-12(in Chinese with English abstract)

    [13]

    [13]Kay R W, Kay S M. 2002. Andean adakites: three ways to make them. Acta Petrologica Sinica, 18(3): 303-311

    [14]

    [14]Kay R W. 1978. Aleutian magnesium andesites: melts from subducted Pacific oceanic crust. J. Volcanol. Geotherm. Res., 4: 117-132

    [15]

    [15]Kay S M, Mpodozis C. 2001. Central Andean ore deposits linker to evolving shallow subduction systems and thickening crust. GSA Today, 4-9

    [16]

    [16]Kay S M, Ramos V A, Marques M. 1993. Evidence in Cerro Pampa Volcanic Rocks for Slab-Melting Prior to Ridge-Trench Collision in Southern South American. J. Geol., 101: 703-714

    [17]

    [17]Li J Y. 1988. Researching on Paleozoic plate tectonics of Karamaili area, east Junggar, Xinjiang. Institute of Geology, Chinese Academy of Geological Sciences, 1-271(in Chinese with English abstract)

    [18]

    [18]Li L Z, Yang S C, Kang B H. 1995. Geologic features and ore content of porphyry group in the Himalayan Epoch in Xihanping-Mofancun, Yanyuan. Acta Geologica Sichuan, 15: 283-293(in Chinese with English abstract)

    [19]

    [19]Lin J Q, Tan D J, Chi X G. 1992. Mesozoic Granite in Jiao-Liao Peninsula. Beijing: Sci. Publ. House. 1-208.(in Chinese)

    [20]

    [20]Ma C Q, Yang K G, Tang Z H. 1994. Magma-Dynamics of Granitoids-Theory, Method and a Case Study of the Eastern Hubei Granitoids. Wuhan: Press of Chinese University of Geosciences, 1-260(in Chinese with English abstract)

    [21]

    [21]Martin H. 1999. Adakitic magmas: modern analogues of Archean granitoids. Lithos, 46: 411-429

    [22]

    [22]Morris P A. 1995. Slab melting as an explanation of Quaternary volcanism and aseismicity in southwest Japan. Geology, 23: 395-398

    [23]

    [23]Muir R J, Weaver S D, Bradshaw J D, Eby G N, and Evans J A. 1995. The Cretaceous separation point batholith, New Zealand: granitoid magmas formed by melting of mafic lithosphere. J. Geol. Soc. London, 152: 689-701

    [24]

    [24]Oyarzun R, M rquez A, Lillo J, et al. 2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism. Mineral. Deposit, 36: 794-798

    [25]

    [25]Peacock S M, Rushmer T, Thompson A B. 1994. Partial melting of subducting oceanic crust. Earth Planet. Sci. Lett., 121: 227-244

    [26]

    [26]Petford N, Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. J. Petrol., 37: 1491-1521

    [27]

    [27]Qin K Z, Wang Z T. 1993. Rare earth element behaviors in the Wunugetushan Cu-Mo deposit, Inner Mongolia, and its significance. Acta Geologica Sinica, 67: 323-335(in Chinese with English abstract)

    [28]

    [28]Qu X M, Hou Z Q, Huang W. 2001. Is Gangdese porphyry copper belt the second "Yulong" copper belt? Mineral Deposits, 20: 355-366(in Chinese with English abstract)

    [29]

    [29]Rapp R P, Shimizu N, Norman M D et al. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem. Geol., 160: 335-356

    [30]

    [30]Rapp R P, Watson E B and Miller C F. 1991. Partial melting of amphibolite/ eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Ressearch, 51: 1-25

    [31]

    [31]Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling. J. Petrol., 36: 891-931

    [32]

    [32]Rapp R P. 2001. A review of experimental constraints on adakite petrogenesis. In: Symposium on adakite-like rocks and their geodynamic significance(abstract). Beijing, China, 2001/1-2/Dec. 10-12

    [33]

    [33]Rogers G, Saunders A D, Terrell D J et al. 1985. Geochemistry of Holocene volcanic rocks associated with ridge subduction in Baja California, Mexico. Nature, 315: 389-392

    [34]

    [34]Rui Z Y, Wang F T, Li H H, Dong L H, Wang L, Jiang L F, Liu Y L, Wang L S, Chen W. 2001. Advance of the porphyry copper belt of the East Tianshan mountain, Xinjiang. Chinese Geology, 10: 11-16(in Chinese with English abstract)

    [35]

    [35]Rui Z Y. 2000. Research on porphyry copper deposit of Northwest, North and Northeast China. In: Tu G Z, et al. (eds.). Super-large deposits in China. Beijing: Science Press, 397-425(in Chinese with English abstract)

    [36]

    [36]Sajona F G, Bellon H, Maury R C et al. 1994. Magmatic response to abrupt changes in geodynamic settings: Pliocene-Quaternary calc-alkaline and Nb-enriched lavas from Mindanao (Philippines). Tectonophysics, 237: 47-72

    [37]

    [37]Sajona F G, Maury R C, Bellon H et al. 1993. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology, 21: 1007-1010

    [38]

    [38]Sajona FG, Maury RC. 1998. Association of adakites with gold and copper mineralization in the Philippines. CR ACAD SCI II A, 326 (1): 27-34

    [39]

    [39]Sen C, Dunn T. 1994. Dehydration melting of a basaltic composition amphiobolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contrib. Mineral. Petrol., 117: 394-409

    [40]

    [40]Sheppard S, Griffin T J, Tyler et al. 2001. High- and low-K granites and adakites at a Paleoproterozoic plate boundary in northwestern Australia. J. Geol. Soc. London, 158: 547-560

    [41]

    [41]Sillito R H. 1998. Major regional factors favoring large size, high hypogene grade, elevated Au content and supergene oxidation and enrichment of porphyry copper deposits. In: Porter T M (ed.). Porphyry and Hydrothermal Cu Deposits-A Global Perspective, 22-34

    [42]

    [42]Springer W, Seck H A. 1997. Partial fusion of basic granulites at 5 to 15 kbar: implications for the origin of TTG magmas. Contrib. Mineral. Petrol., 127: 30-45

    [43]

    [43]Stern C R, Kilian R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contri. Mineral. Petrol., 123: 263-281

    [44]

    [44]Thieblemont D, Stein G, Lescuyer J-L. 1997. Gisements epithermaux et porphyriques: la connexion adakite. Earth Planet. Sci. Lett., 325: 103-109

    [45]

    [45]Trumbull R B, Hua L, Lehrberger G et al. 1996. Granitoid-hosted gold deposits in the Anjiayingzi district of Inner Mongolia, People\'s Republic of China. Economic Geology, 91: 873-895

    [46]

    [46]Wang Q, Xu J F, Wang J X. 2000. Confirmation of adakite-type grey gneiss in north Dabie Mts. and its relationship of ultra-high-pressure metamorphism. Chinese Sci. Bull., 45: 1017-1024(in Chinese)

    [47]

    [47]Wang Q, Xu J, Wang J, Zhao Z, Qiu J, Wang R, Xiong X,Sang L, Peng L. 2000. The recognization of adakite-type gneisses in the North Dabie Mountains and its implication to ultrahigh pressure metamorphic geology. Chinese Science Bulletin, 45: 1927-1933(in Chinese with English abstract)

    [48]

    [48]Wang Q, Zhao Z H, Xiong X L, Xu J F. 2001. Melting of the underplating basaltic lower crust: evidence from the Shaxi adakitic sodic quartz diorite-porphyrites, Anhui province, China. Geochimica, 30: 353-362(in Chinese with English abstract)

    [49]

    [49]Wang Y, Zhang Q, Qian Q. 2000. Adakite: geochemical characteristics and tectonic significances. Sci. Geol. Sinica, 35: 251-256 (in Chinese with English abstract)

    [50]

    [50]Xu J F, Wang Q, Xu Y G, Zhao Z H, Xiong X L. 2001. Geochemistry of Anjishan intermediate-acid intrusive rocks in Ningzhen area: Constraint to origin of the magma with HREE and Y depletion. Acta Petrologica Sinica, 17: 576-584 (in Chinese with English abstract)

    [51]

    [51]Yogodzinski G M, Kay R W, Volynets O N, Koloskov A V, Kay S M. 1995. Magnesiun andesite in the western Aleutian Komandorsky region: implications for slab melting and pressures in the mantle wedge. Geol. Soc. Am. Bull., 107: 505-519

    [52]

    [52]Yogodzinski G M, Kelemen P B. 1998. Slab melting in the Aleutians: implications of an ion probe study of clinopyroxene in primitive adakite and basalt. Earth Planet. Sci. Lett., 158: 53-65

    [53]

    [53]Zhang Q, Wang Y, Qian Q, Yang J H, Wang Y L, Zhao T P. 2001. The characteristics and tectonic-metallogenic significances of the Mesozoic adakites in eastern China. Acta Petrologica Sinica, 17: 236-244 (in Chinese with English abstract)

    [54]

    [54]Zhang Y Q, Xie Y W, Qiu H N, Li X H, Chung S L. 1998. Shoshonitic series: geochemical characteristics of elements for ore bearing porphyry from Yulong copper ore belt in eastern Tibet. Earth Science, 23: 557-561(in Chinese with English abstract)

    [55]

    [55]毕献武, 胡瑞忠, 叶造军, 邵树勋. 1999. A型花岗岩类与铜成矿关系研究──以马厂箐铜矿为例. 中国科学(D)29: 389-495

    [56]

    [56]陈文明. 2001. 论东天山土屋-延东(斑岩)铜矿的容矿岩. 见: 东天山铜多金属矿床成矿过程和成矿动力学及找矿预测新技术新方法会议(论文及摘要集), 2001年12月, 北京, 123-128

    [57]

    [57]戴自希. 1996. 全球超巨型金属矿床(区). 见: 中国地质矿产信息研究院(编著). 走向21世纪的地学与矿产资源. 北京: 地质出版社, 35-42

    [58]

    [58]Defant M J, 许继峰, Kepezhinskas P, 王强, 张旗, 肖龙. 2002. 埃达克岩:关于其成因的一些不同观点. 岩石学报, 18(2): 129-142

    [59]

    [59]侯增谦, 莫宣学, 高永丰, 曲晓明, 孟祥金. 2003. 埃达克岩: 斑岩铜矿的一种可能的重要含矿母岩--以西藏和智利斑岩铜矿为例. 矿床地质, 22: 1-12

    [60]

    [60]Kay R W, Kay S M. 2002. 安第斯埃达克岩: 三种成因模式. 岩石学报, 18(3): 303-311

  • 加载中
计量
  • 文章访问数:  7561
  • PDF下载数:  8367
  • 施引文献:  0
出版历程
修回日期:  2002-07-30
刊出日期:  2003-08-31

目录