胶东半岛黄崖剖面早白垩世火山岩古地磁结果及其构造意义

秦华峰, 潘永信, 贺怀宇, 杨列坤, 朱日祥. 胶东半岛黄崖剖面早白垩世火山岩古地磁结果及其构造意义[J]. 岩石学报, 2016, 32(10): 3205-3213.
引用本文: 秦华峰, 潘永信, 贺怀宇, 杨列坤, 朱日祥. 胶东半岛黄崖剖面早白垩世火山岩古地磁结果及其构造意义[J]. 岩石学报, 2016, 32(10): 3205-3213.
QIN HuaFeng, PAN YongXin, HE HuaiYu, YANG LieKun, ZHU RiXiang. Paleomagnetism of Early Cretaceous volcanic rocks at Huangya section in Jiaodong Peninsula and implications for tectonics.[J]. Acta Petrologica Sinica, 2016, 32(10): 3205-3213.
Citation: QIN HuaFeng, PAN YongXin, HE HuaiYu, YANG LieKun, ZHU RiXiang. Paleomagnetism of Early Cretaceous volcanic rocks at Huangya section in Jiaodong Peninsula and implications for tectonics.[J]. Acta Petrologica Sinica, 2016, 32(10): 3205-3213.

胶东半岛黄崖剖面早白垩世火山岩古地磁结果及其构造意义

  • 基金项目:

    本文受国家自然科学基金项目(91414101、41210003)资助.

Paleomagnetism of Early Cretaceous volcanic rocks at Huangya section in Jiaodong Peninsula and implications for tectonics.

  • 对采自于胶东半岛黄崖剖面火山岩样品进行了系统的岩石磁学和古地磁学研究,结果表明HY1和HY2熔岩流样品的载磁矿物主要为磁铁矿和赤铁矿的混合,HY3熔岩流的样品主要为磁铁矿。系统热退磁实验从40块样品中分离出了稳定的特征剩磁方向,获得古地磁偏角/倾角平均方向为12.8°/62.4°(α95=4.8°),对应的平均虚地磁极位置为76.7°N/162.6°E(A95=6.2°)。40Ar/39Ar同位素定年结果显示,HY3火山岩的喷出年龄约为115.3±1.3Ma~115.6±1.6Ma(2σ)。比较结果显示,未发现研究区相对于华北块体在早白垩世有较大幅度的旋转或位移。对比山东、辽宁地区以及朝鲜半岛南部已有的晚中生代古地磁数据,发现侏罗-白垩纪期间古地磁的偏角随时间变化规律具有相似性,说明块体的旋转运动具有较一致规律性,指示东亚东缘构造运动可能受到古太平洋俯冲运动方向调整的影响。
  • 加载中
  • [1]

    Ao H and Deng CL. 2007. Review in the identification of magnetic minerals. Progress in Geophysics, 22(2):432-442 (in Chinese with English abstract)

    [2]

    Baksi AK. 2007. A quantitative tool for detecting alteration in undisturbed rocks and mineral-I:Water, chemical weathering, and atmospheric argon. In:Foulger GR and Jurdy DM (eds.). The Origins of Melting Anomalies:Plates, Plumes and Planetary Processes. Special Paper of the Geological Society of America, 430:285-303

    [3]

    Besse J and Courtillot V. 2002. Apparent and true polar wander and the geometry of the geomagnetic field over the last 200Myr. J. Geophys. Res., 107(B11):2300

    [4]

    Biggin AJ, van Hinsbergen DJ, Langereis CG et al. 2008. Geomagnetic secular variation in the Cretaceous normal superchron and in the Jurassic. Physics of the Earth and Planetary Interiors, 169(1-4):3-19

    [5]

    Charles N, Chen Y, Augier R et al. 2011. Palaeomagnetic constraints from granodioritic plutons (Jiaodong Peninsula):New insights on Late Mesozoic continental extension in eastern Asia. Physics of the Earth and Planetary Interiors, 187(3-4):276-291

    [6]

    Collinson DW. 1983. Methods in Rock Magnetism and Palaeomagnetism:Techniques and Instrumentation. London:Chapman and Hall

    [7]

    Doh SJ, Kim W, Suk D et al. 2002. Palaeomagnetic and rock-magnetic studies of Cretaceous rocks in the Gongju Basin, Korea:Implication of clockwise rotation. Geophys. J. Int., 150(3):737-752

    [8]

    Dong SW, Zhang YQ, Long CX et al. 2007. Jurassic tectonic revolution in China and new interpretation of the Yanshan Movement. Acta Geologica Sinica, 81(11):1449-1461 (in Chinese with English abstract)

    [9]

    Dunlop DJ. 2002. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils. J. Geophys. Res., 107(B3):EPM 5-1-EPM 5-15

    [10]

    Fisher RA. 1953. Dispersion on a sphere. Proceedings of the Royal Society of A, 217(1130):295-305

    [11]

    Gilder SA, Leloup PH, Courtillot V et al. 1999. Tectonic evolution of the Tancheng-Lujiang (Tan-Lu) fault via Middle Triassic to Early Cenozoic paleomagnetic data. J. Geophys. Res., 104(B7):15365-15390

    [12]

    He HY, Wang XL, Zhou ZH, Wang F, Boven A, Shi GH and Zhu RX. 2004. Timing of the Jiufotang Formation (Jehol Group) in Liaoning, northeastern China and its implications. Geophys. Res. Lett., 31(12):L12605

    [13]

    He HY, Pan YX, Tauxe L, Qin HF and Zhu RX. 2008. Toward age determination of the M0r (Barremian-Aptian boundary) of the Early Cretaceous. Physics of the Earth and Planetary Interiors, 169(1-4):41-48

    [14]

    Huang BC, Piper JDA, Zhang CX, Li ZY and Zhu RX. 2007. Paleomagnetism of Cretaceous rocks in the Jiaodong Peninsula, eastern China:Insight into block rotations and neotectonic deformation in eastern Asia. J. Geophys. Res., 112 (B3):B03106

    [15]

    Jeong D, Yu Y, Doh SJ et al. 2015. Paleomagnetism and U-Pb geochronology of the Late Cretaceous Chisulryoung Volcanic Formation, Korea:Tectonic evolution of the Korean Peninsula. Earth, Planets and Space, 67(1):66

    [16]

    Kirschvink JL. 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophys. J. Int., 62(3):699-718

    [17]

    Koppers AAP, Morgan JP, Morgan JW and Staudigel H. 2001. Testing the fixed hotspot hypothesis using 40Ar/39Ar age progressions along seamount trails. Earth Planet. Sci. Lett., 185(3-4):237-252

    [18]

    Koppers AAP. 2002. ArArCALC-software for 40Ar/39Ar age calculations. Computers & Geosciences, 28(5):605-619

    [19]

    Lee YS and Min KD. 1995. Paleomagnetic study for tectonism on the Okcheon zone since Mesozoic. Econ. Environ. Geol., 28:493-501

    [20]

    Lee YS, Han HC, Hwang JH et al. 2011. Evidence for significant clockwise rotations of the Korean Peninsula during Cretaceous. Gondwana Research, 20(4):904-918

    [21]

    Lin W, Chen Y, Faure M et al. 2003. Tectonic implications of new Late Cretaceous paleomagnetic constraints from eastern Liaoning Peninsula, NE China. J. Geophys. Res., 108(B6):2313

    [22]

    Liu JL, Davis GA, Lin ZY and Wu FY. 2005. The Liaonan metamorphic core complex, southeastern Liaoning Province, North China:A likely contributor to Cretaceous rotation of eastern Liaoning, Korea and contiguous areas. Tectonophysics, 407(1-2):65-80

    [23]

    Maruyama S, Isozaki Y, Kimura G et al. 1997. Paleogeographic maps of the Japanese Islands:Plate tectonic synthesis from 750Ma to the present. Island Arc, 6(1):121-142

    [24]

    McFadden PL and Lowes FJ. 1981. The discrimination of mean directions drawn from Fisher distributions. Geophys. J. Int., 67(1):19-33

    [25]

    Okada H. 2000. Nature and development of Cretaceous sedimentary basins in East Asia:A review. Geosciences Journal, 4(4):271-282

    [26]

    Otofuji Y, Ho Kim K, Inokuchi H et al. 1986. A paleomagnetic reconnaissance of Permian to Cretaceous sedimentary rocks in Southern part of Korean Peninsula. J. Geomag. Geoelectr., 38(5):387-402

    [27]

    Park YH, Doh SJ, Ryu IC et al. 2005. A synthesis of Cretaceous palaeomagnetic data from South Korea:Tectonic implications in East Asia. Geophys. J. Int., 162(3):709-724

    [28]

    Qin HF, He HY, Liu QS and Cai SH. 2011. Palaeointensity just at the onset of the Cretaceous normal superchron. Physics of the Earth and Planetary Interiors, 187(3-4):199-211

    [29]

    Qiu LG, Ren FL, Cao ZX et al. 2008. Late Mesozoic magmatic activities and their constraints on geotectonics of Jiaodong region. Geoteconica et Metallogenia, 32(1):117-123 (in Chinese with English abstract)

    [30]

    Renne PR, Swisher CC, Deino AL, Karner DB, Owens TL and DePaolo DJ. 1998. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem. Geol., 145(1-2):117-152

    [31]

    Steiger RH and Jäger E. 1977. Subcommission on geochronology:Convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett., 36(3):359-362

    [32]

    Sun WD, Ding X, Hu YH and Li XH. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth Planet. Sci. Lett., 262(3-4):533-542

    [33]

    Sub ZM, Yang ZN, Zhao Y and Ma XH. 1998. The tectonic significance of paleomagnetism results in Luanping basin in Hebei Province. Science in China (Series D), 41(Suppl.):42-50

    [34]

    Tang JF, Liu YL and Wang QF. 2008. Geochronology of Mesozoic volcanic rocks in Shangdong Province. Acta Petrologica Sinica, 24(6):1333-1338 (in Chinese with English abstract)

    [35]

    Tauxe L, Bertram HN and Seberino C. 2002. Physical interpretation of hysteresis loops:Micromagnetic modeling of fine particle magnetite. Geochem. Geophys. Geosyst., 3(10):1-22

    [36]

    Torsvik TH, Van der Voo R, Preeden U et al. 2012. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Sci. Rev., 114(3-4):325-368

    [37]

    Uchimura H, Kono M, Tsunakawa H et al. 1996. Paleomagnetism of Late Mesozoic rocks from northeastern China:The role of the Tan-Lu fault in the North China Block. Tectonophysics, 262(1-4):301-319

    [38]

    Wang Y. 2006. The onset of the Tan-Lu fault movement in eastern China:Constraints from zircon (SHRIMP) and 40Ar/39Ar dating. Terra Nova, 18(6):423-431

    [39]

    Wu FY, Lin JQ, Wilde SA, Zhang XO and Yang JH. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet. Sci. Lett., 233(1-2):103-119

    [40]

    Xu JW, Zhu G, Tong WX et al. 1987. Formation and evolution of the Tancheng-Lujiang wrench fault system:A major shear system to the northwest of the Pacific Ocean. Tectonophysics, 134(4):273-310

    [41]

    Zhang YQ, Li JL, Zhang T, Dong SW and Yuan JY. 2008. Cretaceous to Paleocene tectono-sedimentary evolution of the Jiaolai Basin and the contiguous areas of the Shandong Peninsula (North China) and its geodynamic implications. Acta Geologica Sinica. 82(9):1229-1257 (in Chinese with English abstract)

    [42]

    Zhao XX, Coe RS, Chang KH et al. 1999. Clockwise rotations recorded in Early Cretaceous rocks of South Korea:Implications for tectonic affinity between the Korean Peninsula and North China. Geophys. J. Int., 139(2):447-463

    [43]

    Zhu G, Niu ML, Xie CL et al. 2010. Sinistral to normal faulting along the Tan-Lu Fault Zone:Evidence for geodynamic switching of the East China continental margin. The Journal of Geology, 118(3):277-293

    [44]

    Zhu G, Wang W, Gu CC et al. 2016. Late Mesozoic evolution history of the Tan-Lu Fault Zone and its indication to destruction processes of the North China Craton. Acta Petrologica Sinica, 32(4):935-845 (in Chinese with English abstract)

    [45]

    Zhu RX, Pan YX, Shaw J, Li DM and Li Q. 2001. Geomagnetic palaeointensity just prior to the Cretaceous normal superchron. Physics of the Earth and Planetary Interiors, 128(1-4):207-222

    [46]

    Zhu RX, Shao JA, Pan YX et al. 2002. Paleomagnetic data from Early Cretaceous volcanic rocks of West Liaoning:Evidence for intracontinental rotation. Chinese Science Bulletin, 47(21):1832-1837

    [47]

    Zhu RX, Hoffman KA, Pan YX, Shi RP and Li DM. 2003. Evidence for weak geomagnetic field intensity prior to the Cretaceous normal superchron. Physics of the Earth and Planetary Interiors, 136(3-4):187-199

    [48]

    Zhu RX, Lo CH, Shi RP, Shi GH, Pan YX and Shao J. 2004. Palaeointensities determined from the Middle Cretaceous basalt in Liaoning Province, northeastern China. Physics of the Earth and Planetary Interiors, 142(1-2):49-59

    [49]

    Zhu RX, Chen L, Wu FY and Liu JL. 2011. Timing, extent and mechanism of destruction of the North China Craton. Science China (Earth Sciences),54(6):789-797

    [50]

    Zhu RX, Xu YG, Zhu G, Zhang HF, Xia QK and Zheng TY. 2012. Destruction of the North China Craton. Science China (Earth Sciences), 55(10):1565-1587

    [51]

    敖红, 邓成龙. 2007. 磁性矿物的磁学鉴别方法回顾. 地球物理学进展, 22(2):432-442

    [52]

    董树文, 张岳桥, 龙长兴等. 2007. 中国侏罗纪构造变革与燕山运动新诠释. 地质学报, 81(11):1449-1461

    [53]

    邱连贵, 任凤楼, 曹忠祥等. 2008. 胶东地区晚中生代岩浆活动及对大地构造的制约. 大地构造与成矿学, 32(1):117-123

    [54]

    孙知明, 杨振宇, 赵越, 马醒华. 1998. 河北滦平盆地早白垩世古地磁结果的构造意义. 中国科学(D辑), 28(S):17-23

    [55]

    唐嘉锋, 刘玉琳, 王启飞. 2008. 山东中生代火山岩年代学研究. 岩石学报, 24(6):1333-1338

    [56]

    张岳桥, 李金良, 张田等. 2008. 胶莱盆地及其邻区白垩纪-古新世沉积构造演化历史及其区域动力学意义. 地质学报, 82(9):1229-1257

    [57]

    朱光, 王薇, 顾承串等. 2016. 郯庐断裂带晚中生代演化历史及其对华北克拉通破坏过程的指示. 岩石学报, 32(4):935-949

    [58]

    朱日祥, 邵济安, 潘永信等. 2002. 辽西白垩纪火山岩古地磁测定与陆内旋转运动. 科学通报, 47(17):1335-1340

    [59]

    朱日祥, 陈凌, 吴福元等. 2011. 华北克拉通破坏的时间、范围与机制. 中国科学(地球科学), 41(5):583-592

    [60]

    朱日祥, 徐义刚, 朱光, 张宏福, 夏群科, 郑天愉. 2012. 华北克拉通破坏. 中国科学(地球科学), 42(8):1135-1159

  • 加载中
计量
  • 文章访问数:  3736
  • PDF下载数:  5405
  • 施引文献:  0
出版历程
收稿日期:  2016-05-11
修回日期:  2016-08-18
刊出日期:  2016-10-31

目录